White Papers

AMCAD

RF Power Amplifier Behavioral Modeling for System Level Simulation

This Whitepaper addresses the challenges of RF system simulation to optimize Power Amplifier performance. Key issues include compromise between simulation accuracy and speed to manage signal distortion under load-pull conditions. DPD techniques address linearity but pose cost and implementation challenges, especially with emerging 5G standards and active antenna architectures.


Read More

Solving RF Isolation Issues with RF Inductors

Many consumer products communicate over broadband networks. From television to fiber transmission networks, the bandwidth of data communication is increasing, and the integrity of RF signals has become a major concern. This paper demonstrates how inductors are used for RF isolation in circuits ranging from relatively narrow band applications like portable devices up to broadband networks for data distribution.


Read More
Anritsu

Enhancing Military Operations: Satellite Communications, 5G Impact, and Interference Mitigation

This paper highlights the pivotal role of secure satellite communications (SATCOM) in modern military operations, emphasizing their unmatched connectivity and strategic advantages. It addresses the criticality of SATCOM for uninterrupted communication on the battlefield, discusses multifaceted utility, explores 5G integration implications, addresses interference challenges, and introduces Anritsu spectrum analyzers for innovative interference mitigation solutions.


Read More
Remcom

Ray-Optical Modeling of Wireless Coverage Enhancement Using Engineered Electromagnetic Surfaces: Experimental Verification at 28 GHz

Engineered electromagnetic surfaces (EES) are passive metasurfaces designed to artificially enhance wireless signal coverage. In this paper, propagation experiments are conducted to verify the accuracy of a novel ray-optical scattering model for EES. Wireless InSite’s implementation of the scattering model is presented along with measured and simulated propagation data for a large indoor office environment.


Read More
RS

Characterizing Parasitic Components in Power Converters

The increased use of wide bandgap semiconductors like GaN and SiC in power converters enables high-power-density supplies with low switching losses and improved efficiency. Yet, benefits of these fast-switching transistors can be hindered without addressing parasitics at high frequencies. The white paper introduces parasitics, describes their presence in passive components, and demonstrates using the R&S®LCX200 LCR meter.


Read More
Fortify

Microwave Lenses with Lower Weight, Higher Gain, Better Aperture Efficiency - A Head to Head Comparison of Luneburg Lenses to Rexolite Lenses

A head-to-head measurement of Fortify’s 3D printed Luneburg lens’ demonstrated improvements in gain, efficiency, weight, and manufacturability over a legacy Rexolite lens solution. Fortify’s 3D printed Luneburg lens demonstrated improvements in gain, efficiency, weight, and manufacturability over the legacy Rexolite lens solution.


Read More
Keysight

Solving EW Challenges in the Lab Enables Mission Success

In today’s crowded and dynamic spectrum environment, predicting how an electronic warfare (EW) system will respond to evolving and emerging threats is challenging. Download Keysight’s white paper and learn how to test your EW system’s strengths and weaknesses in the lab.

  • Efficiently create scenarios with threat simulation software
  • Introduce simultaneous signals with multi-port instruments
  • Increase complexity with scalable systems

Prevail in the EM spectrum environment by ensuring your detection systems work as intended.


Read More
Boonton

Measuring RF & Microwave Power

In today’s wireless world, RF signals are transmitted and received to effectively send data and facilitate wireless communications. Among all the parameters to consider in RF design, power measurements remain one of the most critical metrics for designers and operators.


Read More
Quantic MWD

Phase Noise Impact on Satellite Uplink and Downlink Channel Capacity

This white paper gives an overview of the critical issue of phase noise in satellite communication systems and its impact on channel capacity. Phase noise is a significant contributor to Signal-to-Noise Ratio (SNR) and as such is an important determinant of channel capacity in any communication link. Phase noise, originating from various sources such as satellite transponders and ground equipment can significantly degrade the performance of satellite links, leading to reduced throughput and increased error rates. Understanding and mitigating phase noise is vital for optimizing satellite communication networks and ensuring efficient data transmission.


Read More