White Papers

CopperMountain

VNA Time Domain Processing

From understanding S-parameters to mastering discrete Fourier transforms, this article delves into frequency and time domain analysis, showcasing applications like spectral analysis, impulse response simulations, and time gating for accurate measurements. Explore the intricacies of TDR and lowpass modes, and unlock the potential of VNA technology for precise RF measurements and signal analysis.


Read More
AMCAD

RF Power Amplifier Behavioral Modeling for System Level Simulation

This Whitepaper addresses the challenges of RF system simulation to optimize Power Amplifier performance. Key issues include compromise between simulation accuracy and speed to manage signal distortion under load-pull conditions. DPD techniques address linearity but pose cost and implementation challenges, especially with emerging 5G standards and active antenna architectures.


Read More

Solving RF Isolation Issues with RF Inductors

Many consumer products communicate over broadband networks. From television to fiber transmission networks, the bandwidth of data communication is increasing, and the integrity of RF signals has become a major concern. This paper demonstrates how inductors are used for RF isolation in circuits ranging from relatively narrow band applications like portable devices up to broadband networks for data distribution.


Read More
Anritsu

Enhancing Military Operations: Satellite Communications, 5G Impact, and Interference Mitigation

This paper highlights the pivotal role of secure satellite communications (SATCOM) in modern military operations, emphasizing their unmatched connectivity and strategic advantages. It addresses the criticality of SATCOM for uninterrupted communication on the battlefield, discusses multifaceted utility, explores 5G integration implications, addresses interference challenges, and introduces Anritsu spectrum analyzers for innovative interference mitigation solutions.


Read More
Remcom

Ray-Optical Modeling of Wireless Coverage Enhancement Using Engineered Electromagnetic Surfaces: Experimental Verification at 28 GHz

Engineered electromagnetic surfaces (EES) are passive metasurfaces designed to artificially enhance wireless signal coverage. In this paper, propagation experiments are conducted to verify the accuracy of a novel ray-optical scattering model for EES. Wireless InSite’s implementation of the scattering model is presented along with measured and simulated propagation data for a large indoor office environment.


Read More
RS

Characterizing Parasitic Components in Power Converters

The increased use of wide bandgap semiconductors like GaN and SiC in power converters enables high-power-density supplies with low switching losses and improved efficiency. Yet, benefits of these fast-switching transistors can be hindered without addressing parasitics at high frequencies. The white paper introduces parasitics, describes their presence in passive components, and demonstrates using the R&S®LCX200 LCR meter.


Read More
Fortify

Microwave Lenses with Lower Weight, Higher Gain, Better Aperture Efficiency - A Head to Head Comparison of Luneburg Lenses to Rexolite Lenses

A head-to-head measurement of Fortify’s 3D printed Luneburg lens’ demonstrated improvements in gain, efficiency, weight, and manufacturability over a legacy Rexolite lens solution. Fortify’s 3D printed Luneburg lens demonstrated improvements in gain, efficiency, weight, and manufacturability over the legacy Rexolite lens solution.


Read More