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Introduction 
The general concept of noise figure is well understood and widely used by system and circuit designers 

alike. In particular, it is used to convey noise-performance requirements by product definers and circuit designers 
and to predict the overall sensitivity of receiver systems. 

 
The principle difficulty with noise-figure analysis arises when mixers are part of the signal chain. All real 

mixers fold the RF spectrum around the local oscillator (LO) frequency, creating an output which contains the 
summation of the spectrum on both sides according to               . In heterodyne architectures one of these 

contributions may be considered spurious and the other intended. Therefore, image reject filtering or image 
canceling schemes are likely to be employed to largely remove one of these responses. In direct-conversion 
receivers, the case is different; both sidebands (above and below        ) are converted and utilized for the 

wanted signal. Consequently, this is truly a double-sideband application of the mixers. 
 
Various definitions commonly used in industry acount for noise folding to different degrees. For example, 

the traditional single-sideband noise figure,      assumes that the noise from both sidebands is allowed to fold into 

the output signal, but only one of the sidebands is useful for conveying the wanted signal. This naturally results in a 
3dB increase in noise figure, assuming that the conversion gain at both responses is equal. Conversely, the 
double-sideband noise figure assumes that both responses of the mixer contain parts of the wanted signal and, 
therefore, noise folding (along with corresponding signal folding) does not impact the noise figure. The 
double-sideband noise figure finds application in direct-conversion receivers as well as in radio astronomy receivers. 
However, deeper analysis will show that it is not sufficient for designers just to choose the right “flavor” of noise 
figure for a given application and then to substitute the corresponding number into the standard Friis equation. Doing 

so can lead to substantially faulty analysis, which may be particularly severe in cases when the mixers or components 
following the mixer play a non-negligible role in determining system noise figure. 

 
This article ties together the fundamenal definition of noise figure, equation-based analysis of cascade 

blocks involving mixers, and typical lab techniques for measuring noise figure. In this Part 1 we show how the 
cascaded noise figure equation is modified by the presence of one or mixers and we derive the applicable equations 
for a number of popular downconversion architectures. We continue this discussion in Part 2 of this series where we 
describe the Y-factor method of noise-figure measurement. In Part 2 we focus on the case of a mixer as the device 
under test in order to identify appropriate measurement methods for mixer noise figures that can be validly applied 
using the cascade equations derived in Part 1.  

 

Conceptual Model of Mixer Noise 
One way to visualize mixer noise contributions is to consider a conceptual model of a mixer (Figure 1). This 

model is based on one1 provided by Agilent’s Genesys Simulation Program.  
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Figure 1. Mixer noise contributions. 

   
In this model the input signal is split into two independent signal paths, one representing RF frequencies 

above the LO, and the other frequencies below the LO. Each path is subject to independent additive noise processes 
in the mixer, and independent amounts of conversion gain are applied. Finally, the two paths are translated in 
frequency to the IF frequency and additively combined with further noise contributions that can arise in the output 
stage of the mixer. The self-noise power per unit bandwidth may not be the same in the wanted and image bands; 
the corresponding conversion gains may also be different. 

 
For convenience, we can refer all the sources of noise to the output and collect them in a global noise term 

  , representing the total additional noise power per unit bandwidth available from the mixer output port.  

  
                  

 
Note that    is not at all dependent on the presence or absence of signals at the mixer’s input port. 

 
   

 
 
Figure 2. Source noise and mixer noise contributions. 

   
Having summarized the internal noise sources of the mixer, we now turn to the noise attributable to the 

source termination (Figure 2). We identified two discrete noise sources representing the input noise density due to 
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the source termination at the wanted frequency and the image frequency, respectively. We must account for these 

as independent quantities, because the application circuit can cause one of them to be attenuated and the other 
transferred with low loss into the mixer’s RF input port. This will likely be the case, if the image and wanted RF 
frequencies are well separated and a frequency-selective match is employed.  

 
In the case of a broadband match we could write,                    . However, in the case of a 

high-Q, frequency selective match to the mixer at the wanted RF frequency, the noise at the output due to the 
source termination at the image frequency may be negligible, leading to              . Generally, we can 

assign a coefficient,  , to the effective fraction of the input source-termination noise power available to the mixer’s 
input port at the image frequency. Thus,                     , where   is an application-specific coefficient 

in the range      . Later we shall see that the effective noise figure in an application depends on the value of  . 
 

Noise-Figure Definitions 
Before discussing why cascaded noise-figure calculations can be misleading, we should review some basic 

definitions of the term. 
 
A reasonable starting point for explaining noise factor for a two-port network is:  
  

  
     

      
  

 
Which, when expressed in dB, is termed the noise figure : 

  
               

 
This expression depends on the SNR of the input signal. If SNR is left undefined, however, this measure is 
meaningless as a performance measure of the circuit or component itself, since it largely depends on the quality of 
the signal feeding it. Therefore, it is desriable to take the best-case assumption for the SNR at the input, namely that 
the only source of noise is due to the thermal noise of the input termination, at some defined temperature. It is also 
logical to assume that the noise factor does not depend on the signal levels used. This assumes that the two-port 
network being characterized is in its linear operating region. This can be seen if we let the input signal power be     

and the signal gain be   . Then, the output power is given by            and:  

  

  
     

      
 

   
   

 
    

     
 

    

     
  

 
Furthermore, these noise powers,     and      are ill-defined unless we specify the bandwidths in which they are 

measured. This can be solved by specifying     and      to represent noise power per unit bandwidth at any given 

specified input frequency. 
 

Single Sideband Noise Factor 
The above considerations help to explain the rationale for the IEEE® definition of Noise Factor:  
 

Noise Factor (of a Two-Port Transducer). At a specified input frequency the ratio of 1) the total noise 
power per unit bandwidth at a corresponding output frequency available at the output Port to 2) that 
portion of 1) engendered at the input frequency by the input termination at the Standard Noise 
Temperature (290 K).   
For heterodyne systems there will be, in principle, more than one output frequency corresponding to a 
single input frequency, and vice versa; for each pair of corresponding frequencies a Noise Factor is defined.  
The phrase “available at the output Port" may be replaced by “delivered by the system to an output 
termination."  
To characterize a system by a Noise Factor is meaningful only when the admittance (or impedance) of the 
input termination is specified.2  

 
This definition of noise factor is a point function of output frequency, with respect to one corresponding RF frequency 
(not a pair of RF frequencies simultaneously, which is what makes it a single sideband noise factor; see Figure 3). 
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Figure 3. SSB noise figure. 

   
It is important to note that the denominator only includes noise from one sideband; the numerator 

comprises the total noise power per unit bandwidth at a corresponding output frequency without making any specific 
exclusions. To make this explicit in mathematical form for the case of a mixer with signal and image responses, the 
above definition can be written as:  

  

   
    

     
 

              

     
 

 
Where    is the conversion gain at the image frequency;    is the conversion gain at the signal frequency;    is the 

standard noise temperature; and    is the noise power per unit bandwidth added by the mixer’s electronics as 

measured at the output terminals. The corresponding noise factor for the image frequency can be written as:  
  

   
    

     
 

              

     
 

 
This will be a different number if the conversion gain at the image frequency is different to that at the wanted signal 
frequency. There are some3 who interpret the IEEE definition above to exclude the image noise from the term “total 
noise power per unit bandwidth at the corresponding output frequency available at the output Port.” They therefore 
assume:  

  

      
     
     

 
        

     
 

 
This definition corresponds to a situation where the source input noise at the image frequency is fully excluded from 
the mixer’s input port. This interpretation is not widely utilized by industry practitioners. Nevertheless, for the sake of 
completeness, it is illustrated in Figure 4. 
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Figure 4. “IEEE” variant of SSB noise figure. 

   
The U.S. Federal Standard 1037C  has the following definition of noise factor: 

 
Noise figure: The ratio of the output noise power of a device to the portion thereof attributable to thermal 
noise in the input termination at standard noise temperature (usually 290 K). Note: The noise figure is thus 
the ratio of actual output noise to that which would remain if the device itself did not introduce noise. In 
heterodyne systems, output noise power includes spurious contributions from image-frequency 
transformation, but the portion attributable to thermal noise in the input termination at standard noise 
temperature includes only that which appears in the output via the principal frequency transformation of the 
system, and excludes that which appears via the image frequency transformation. Synonym noise factor.4 
 

Since this more recent definition explicitly includes spurious contributions from image frequency transformation in the 
output noise power, the SSB noise factor can be written as suggested previously:  

  

   
    

     
 

              

     
  

 
Let us consider the case where      . Then: 

   

        
  

     
 

 
If we further consider the case where the mixer adds no noise of its own,     , then we are left with     or 

            .This corresponds to the statement that the SSB noise figure of a noiseless mixer is 3dB. 
 

Double-Sideband Noise Factor 
There are cases where the “principle frequency transformation of the system” is not applicable terminology; 

both responses are equally wanted and useful. Examples include radiometers and direct-conversion receivers. In a 
direct-conversion receiver, the LO frequency is at the center of the RF passband of the wanted signal; the two 
responses of the mixer comprise contiguous halves of the overall wanted signal spectrum. Figure 5 illustrates this 
case. 
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Figure 5. DSB noise figure. 

   
Therefore, in such cases it makes sense to consider a double-sideband noise factor: 

   

     
    

           
 

              

           
   

  

           
 

 
If we assume that      , then: 

   

       
  

      
 

 
Under the same constraint:  

  

       
  

     
 

 
This leads to the observation that, where both conversion gains are equal, the SSB noise figure of the mixer will be 
3dB higher than the corresponding DSB noise figure. Moreover, if the mixer does not add any additional noise 
(    ), then        or             

 

Use of Noise Figures in Cascaded System Noise-Figure 
Calculations 

 

Baseline Case: Cascade of Linear Circuit Blocks 
Consider the following simple cascade of three amplifier blocks (Figure 6). 
 

 
Figure 6. Three gain blocks cascaded. 

  
The total noise at the output can be calculated as: 
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The noise at the output that is attributable to the thermal noise at the input of the cascade is: 
   

              

 
This implies that the overall noise factor is:  

  

  
                           

         
 

 
  

   
   

     
 

   

       
 

   

         
 

 
Substituting:  

  

     
   

     
          

   

     
               

   

     
 

 
Yields:  

  

     
    

  
 
    

    
 

 
This can be recognized as the standard Friis cascaded noise equation for three blocks. Extension to any number of 
blocks is trivial from here. 

 

A Heterodyne Conversion Stage 
Consider the following frequency conversion stage in a receiver signal path (Figure 7). The 

double-sideband noise figure of the mixer is 3dB and its conversion gain is 10dB. The wanted carrier frequency is at 

2000MHz and the LO is chosen at 1998MHz, so that both the wanted and image frequencies are within the passband 
of the of the filter. 

   

 
 
Figure 7. Heterodyne stage with no image rejection. 

   
The cascaded performance of this arrangement is summarized in Table 1, where CF is the channel 

frequency; CNP is the channel noise power; GAIN is the stage gain; CGAIN is the cascaded gain upto and including 
the present stage; and CNF is the cascaded noise figure. 

 
Table 1. Simulated Casacaded Performance* 
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Parts CF (MHz) CNP (dBm) GAIN (dB) CGAIN (dB) CNF (dB) 

CWSource_1  2000 -113.975 0 0 0 

BPF_Butter_1  2000 -113.975 -7.12E-04 -7.12E-04 6.95E-04 

BasicMixer_1  2 -97.965 10 9.999 6.011 

* No image rejection from filter. 

     
The overall cascaded gain of these two blocks is 9.999dB, while the SSB noise figure is 6.011dB. This noise 

figure could have been correctly anticipated from the previous analyis, since we expect the SSB noise figure to be 
3.01dB higher than the DSB figure of the mixer. There is an additional, very small noise figure degradation due to the 
finite insertion loss of the filter. Overall, this result meets our expectations. 

 
Now we consider the same scenario, but with the LO frequency returned to 1750MHz (Figure 8). At this 

value of the LO frequency, the image is at 1500MHz which is well outside the passband of the filter in front of the 
mixer. 

   

 
Figure 8. Heterodyne stage with image rejection. 

   
The cascaded performance of this arrangement is summarized in Table 2. The gain of the wanted signal is 

the same as before, but the cascaded noise figure (CNF) has altered to a value of 4.758dB. 
 

Table 2. Simulated Casacaded Performance* 
Parts CF (MHz) CNP (dBm) GAIN (dB) CGAIN (dB) CNF (dB) 

CWSource_1  2000 -113.975 0 0 0 

BPF_Butter_1  2000 -113.975 -7.12E-04 -7.12E-04 6.95E-04 

BasicMixer_1  250 -99.218 10 9.999 4.758 

* Significant image rejection from filter. 

  
To explain this result, we need to consider that the noise situation in this scenario is similar to that depicted 

in Figure 4. Specifically, the source impedance image noise is suppressed. The added noise from the mixer stage can 
be calculated from the previously derived equation for the DSB noise factor:  

  

       
  

      
          

 

Therefore: 
  

            
 
 
  

 
    

 
Now the total noise at the output of the mixer is given by                       with     in this 

application. Thus:  
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The resulting noise figure can be written as:  

  

  
    

     
 

         
               

     
  

  

                  
 
Expressing this in dB, we have: 
   

               
                      

 
This should be compared to the simulated value of 4.758dB, which included a tiny additional contribution from the 
insertion loss of the filter. 

 
In general, the effective single sideband noise figure for the mixer stage is given by:  
  

                     
 
Where     for the case where termination noise at the image frequency is well suppressed, and     where it is 

not suppressed at all. Note that if    , the effective SSB noise figure reduces to              which is the case 

illustrated at the beginning of this section. In some scenarios, fractional values of   can arise, e.g., if the image 

suppression filter is not directly coupled to the mixer input terminals or if the frequency separation between image 
and wanted responses is not large. 

 

A Heterodyne Receiver 
We can see how to apply the effective noise figure in larger cascade analysis with the example in Figure 9. 

To calculate the cascaded noise figure of the entire chain, we need to encapsulate the mixer and its associated LO 
and image reject filtering as an equivalent two-port network that has specific gain and noise figure. The effective 
noise factor of this two-port network is                    since the termination noise at the image frequency 

is well suppressed by the preceeding filter. 
 

  

 
Figure 9. Heterodyne mixer in the context of adjacent system blocks. 

   
Note that the applicable noise figure is neither the DSB nor the SSB noise figure of the mixer. Instead it is 

an effective noise figure that lies somewhere between these two values. In this case with a DSB noise figure of 3dB, 
the equivalent noise figure of the two-port network can be calculated to be 4.757dB, as already noted above. Using 
this value in the overall cascade calculation results in a system noise figure of 7.281dB, as shown in Table 3. Manual 
calculations show that this result is consistent with the standard Friis equation using 4.757dB for the mixer noise 
figure.  

 
Table 3. Simulated Cascade Performance of Heterodyne Mixer in a System 

   Parts CF (MHz) CNP (dBm) GAIN (dB) SNF (dB) CGAIN (dB) CNF (dB) 
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CWSource_1  2000 -113.975 0 0 0 0 

Lin_1  2000 -100.975 10 3 10 3 

BPF_Butter_1  2000 -100.976 -7.12E-04 7.12E-04 9.999 3 

BasicMixer_1  250 -90.563 10 3 19.999 3.413 

Lin_2  250 -61.695 25 25 44.999 7.281 

   
In general, when subsituting an equivalent two-port network for the mixer and its adjacent components, the 

input port should be the latest node in the signal flow for which the image response is rejected. The output port 
should be the earliest node where the image and wanted responses are combined together (usually the output port 
of the mixer). If the image response of the mixer is not effectively suppressed by the architecture, then the Friis 
equation cannot be used without modification. 

 

A Zero-IF Receiver 
Now consider a zero-IF, or direct-conversion receiver (Figure 10). 
   

Figure 10. ZIF receiver with LNA, mixers, filters and VGAs. 
   
This lineup consists of an LNA with 10dB of gain and 3dB noise figure; a bandpass filter centered at 

950MHz; a signal splitter to send the signal to a pair of mixers, each with a conversion gain of 6dB; and a DSB noise 
figure of 4dB. The VGAs are defined to have gain of 10dB and a 25dB noise figure. A simulation of this lineup 
produced the results shown in Table 4.  
 

Table 4. ZIF Receiver Lineup* 

Parts CF 
(MHz) 

CP 
(dBm) 

CNP 
(dBm) 

GAIN 
(dB) 

SNF 
(dB) 

CGAIN 
(dB) 

CNF 
(dB) 

MultiSource_1 950 -79.999 -116.194 0 0 0 0 

FE_BPF 950 -80.009 -116.194 -9.99E-03 1.00E-02 -9.99E-03 9.99E-03 

Lin_1 950 -70.008 -103.194 10 3 9.99 3.01 

Split2_1 950 -73.018 -105.992 -3.01 3.01 6.98 3.222 

BasicMixer_1 0 -67.039 -99.425 5.979 4 12.959 3.81 

LPF1 0 -67.04 -99.425 -8.23E-04 1.00E-02 12.958 3.81 

Lin_2 0 -57.036 -83.078 9.995 25 22.953 10.163 

LPF2 0 -57.038 -83.08 -1.90E-03 1.00E-02 22.951 10.163 



A1131 

 *The items tabulated are channel frequency (CF), channel power (CP), stage gain (GAIN), stage noise figure (SNF), 

casacded gain (CGAIN), and cascaded noise figure (CNF). 

 
Now in Table 5 we compare this result to an Excel® spreadsheet calculation using the Friis formula for 

cascaded noise figure.  

 
 Table 5. Friis Cascade Equation Results 

 Parts   F (dB)   Gain (dB)   CGAIN (dB)   CNF (dB) 

BPF filter   0.01   -0.01   -0.01   0.01  

LNA   3   10   9.99   3.01  

Splitter   3.01   -3.01   6.98   3.22  

Mixer   4   5.979   12.96   3.81  

LPF1   0.01   -0.01   12.95   3.81  

VGA   25   9.995   22.94   12.65  

LPF2   0.01   -0.01   22.93   12.65  

 
Clearly something has gone wrong with the cascaded noise figure. We are estimating 12.64dB using the 

spreadsheet, but the simulator is finding 10.16dB. The cascaded gains match reasonably well, but we need to 
establish which of the noise figures is valid. First, we are interested in the double-sideband noise figure of the entire 
structure, since the entire ZIF structure will use signals in both sidebands and suffer noise in both sidebands. 
Therefore, it is relevant to derive the double-sideband noise figure of a cascade involving an amplifier, followed by a 
mixer, followed by an additional amplifier (Figure 11). 

   

 
Figure 11. Cascade including a mixer. 

   
The total noise density at the output can be calculated as:  
  

                                   
 
The noise at the output that is attributable to the thermal noise at the input of the cascade is: 
   

                
 
This implies that the overall noise factor is: 
   

     
                       G     

          
 

  

   
   

     
 

   

        
 

   

          
 

 
Substituting: 
   

     
   

     
             

   

      
               

   

     
 

 
Yields:  
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This derivation indicates that it is necessary to use the DSB noise figure of the mixer in the cascade equation, and 
that the noise contributions from all following stages must be divided by 2 with respect to the usual form of the Friis 
equation for a cascaded noise figure. The failure to perform this latter division by 2 caused the spreadsheet equation 
analysis shown in Table 5 to be wrong. Amending the equations in the spreadsheet cells after the mixer to include 
the necessary division by 2 gives the result shown in Table 6.  

  
Table 6. DSB Cascade Equation Results 

 Parts   F (dB)   Gain (dB)   CGAIN (dB)   CNF (dB) 

BPF filter   0.01   -0.01   -0.01   0.01  

LNA   3   10   9.99   3.01  

Splitter   3.01   -3.01   6.98   3.22  

Mixer   4   5.979   12.96   3.81  

LPF1   0.01   -0.01   12.95   3.81  

VGA   25   9.995   22.94   10.17  

LPF2   0.01   -0.01   22.93   10.17  

 
The agreement between Table 6 and Table 4 is now good. However, this exercise has also demonstrated 

the dangers of directly substituting into the Friis cascade equation where mixers are involved. 

 
Now we consider the same scenario, but with the wanted signal 300kHz higher than the LO. The block 

diagram remains as illustrated in Figure 10, but all of the signal falls on the high side of the LO. This makes it a 
low-IF (LIF) application of the same receiver architecture. Using the same Genesys simulation workspace as before, 
the results are as shown below in Table 7. 

 
Table 7. LIF Receiver Simulation Results 

Parts CF 
(MHz) 

CP 
(dBm) 

CNP 
(dBm) 

GAIN 
(dB) 

SNF 
(dB) 

CGAIN 
(dB) 

CNF 
(dB) 

MultiSource_1 950.3 -79.999 -116.194 0 0 0 0 

FE_BPF 950.3 -80.009 -116.194 -9.99E-03 1.00E-02 -9.99E-03 9.99E-03 

Lin_1 950.3 -70.008 -103.194 10 3 9.99 3.01 

Split2_1 950.3 -73.018 -105.992 -3.01 3.01 6.98 3.222 

BasicMixer_1 0.3 -67.067 -96.335 5.938 4 12.918 6.94 

LPF1 0.3 -68.467 -96.458 -1.64E-03 1.00E-02 12.916 6.819 

Lin_2 0.3 -58.832 -80.068 9.969 25 22.885 13.241 

LPF2 0.3 -58.483 -80.072 -4.68E-03 1.00E-02 22.88 13.241 

   
These results are similar to the previous simulation of the same architecture, except that the noise figure 

has increased by 3dB. In fact, even if all the components of this system were noiseless, except the source resistance, 

the noise figure would be 3dB. Essentially, this is an SSB application of the complex receiver structure and there are 
no measures to suppress the unwanted sideband. The derivation for the cascaded noise figure is identical to that 
already given, except that the output noise attributable to the thermal noise at the input of the cascade is once 
again:  

  
               

 
So now:  
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Substituting:  

  

     
   

     
              

   

     
               

   

     
  

 
Yields:  

  

         
        

  
 
    

    
  

 

As expected, every term in the noise cascade equation is multiplied by 2, relative to the DSB use-case of 
this structure. However, this situation is somewhat artificial. We now have a receiver that is wide open to both 
sidebands in terms of noise and interference, but it is only being used for signal in one of those sidebands. Since the 
lower sideband only contributes to the vulnerability of the receiver, it would make sense to employ the quadrature 
channel to provide rejection to the unwanted sideband. One solution would be to combine the I and Q signals at the 
output of the receiver with a 90 degree combiner, thus cancelling signals in the unwanted sideband while 
constructively adding them in the wanted sideband. This would, in effect, convert the entire receiver into an image 
reject downconverter. The final combining stage would recover the system noise figure by the 3dB previously lost, 
assuming that the phases of the signals being combined were sufficiently well controlled at the combining point. A 
simulation schematic for such a scheme is shown in Figure 12 and the corresponding results are tabulated in Table 
8. 

 
 

Figure 12. NZIF receiver with image rejection.  
   
Table 8. LIF Receiver Image Rejection Simulation Results 

Parts CF 
(MHz) 

CP 
(dBm) 

CNP 
(dBm) 

GAIN 
(dB) 

SNF 
(dB) 

CGAIN 
(dB) 

CNF 
(dB) 

MultiSource_1 950.3 -79.995 -116.194 0 0 0 0 

FE_BPF 950.3 -80.005 -116.194 -9.99E-03 1.00E-02 -9.99E-03 9.99E-03 

Lin_1 950.3 -70.004 -103.194 10 3 9.99 3.01 

Split2_1 950.3 -73.014 -105.992 -3.01 3.01 6.98 3.222 
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BasicMixer_1 0.3 -67.053 -96.441 5.958 4 12.938 6.815 

LPF1 0.3 -67.055 -96.443 -1.64E-03 1.00E-02 12.936 6.815 

Lin_2 0.3 -57.047 -80.09 9.991 25 22.927 13.177 

LPF2 0.3 -57.051 -80.094 -3.82E-03 1.00E-02 22.923 13.177 

Split290_2 0.3 -54.062 -80.145 3.001 3.02 25.923 10.125 

   
The impovement of the cascaded noise figure (CNF) by 3dB at the final (combining) stage shows the 

restoration of the noise figure, as expected. 
 

Summary of Noise-Figure Calculations for a Cascaded Receiver 
We have seen that where a mixer is part of a receiver cascade, the Friis equation for cascaded noise factor 

is not usually valid using either the DSB or SSB versions of the mixer noise figure. In cases where a filter is used to 
largely remove the image response of the receiver, an equivalent two-port network can be substituted for the mixer, 
filter, and LO subsystem. However, the resultant noise figure must be calculated from the DSB noise figure, taking 
account of the frequency selectivity of the source termination coupled to the mixer’s input port. 

 
We have also found that the same physical structure can have a different effective noise figure, depending 

on whether the signal is distributed around the LO or is entirely on one side of it (i.e., the application is DSB or SSB 
respectively). The 3dB loss in SNR caused by using a complex receiver in a low-IF (LIF) mode can be (and usually is) 
receovered by appropriate use of image reject combining, complex filtering, or equivalent baseband processing. 

 
The use of Agilent® Genesys to simulate these architectures and scenarios has proven to agree with 

mathematical derivations of the appropriate cascaded noise figure in the cases examined. 

 
For each architecture discussed and simulated in this section, the cascaded noise factor equation is 

summarized in Table 9. 

 
  Table 9. Summary of Derived Equations 

Structure Application Cascaded F Equation 

Three Gain 

Blocks 

Any 
     

    

  
 
    

    
  

Heterodyne 
Mixer 

SSB, ideal image 
filtering      

          

  
 
    

    
  

Complex 

Downconverter 

ZIF 
     

       

  
 
    

     
  

Complex 
Downconverter 

LIF, no image 
suppression       

          

  
 
    

    
  

Complex 

Downconverter 

LIF, image reject 

combining      
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