

MMIC Integration & Packaging for Defence & Automotive Radar: Size & Cost Reductions Create New Market Opportunities

October 9, 2013

Outline

- Overview
- Radar: commercial and defence
- Spatium[™] power amplifiers
- AESA radar components
- RF packaging
- Summary

Synergistic Organization

Mobile Devices

Drives volume scale, lower costs& speed of innovation

Accelerating the Next Generation of RF

Defense

Drives technology research & product solutions

Network Infrastructure

Drives high-performance product portfolio

Technology Integration Leader

 TriQuint is the only high-volume supplier integrating advanced, in-house active and passive technologies for the broad market

CUSTOMER BENEFITS

- Minimize board space
- Saves engineering resources
- Maximize power efficiencies
- Reduced BOM
- Streamlined manufacturing

Basic Defense and Automotive Radar Block Diagrams

AESA Radar Basic Block Diagram

Pulse and Continuous Wave Radar Concepts

Varying complexity, trending towards more antenna ports for better resolution

Automotive Sensors / Radar

Center Radar: Solid-State Power Amplifier, TWT Replacements

Center Feed Radars

TWTA Based Radar

TriQuint Spatium™ Power Amplifier Technology

■ Spatium[™] power amplifiers

- TWTA upgrade / replacement
- Electronic warfare
- MilCom, data links
- Radar
- Test and measurement

■ Key Spatium[™] PA features

- High efficiency
- Compact form-factor
- Low voltage operation
- Graceful degradation
- Short thermal path
- High reliability / long life MTBF
- No aging characteristics
- Frequency scalable

Solid state PA reliability with PAE equal to or greater than a TWTA

Phased Array Radars

 Radar designers are very focused on size, weight and power (SWaP)

GaN Packaged Transistors

Part #	Frequency Range (GHz)	Psat (W)	Gain (dB)	DE (%)
T1G6001032-SM*	DC-6	10W	16	53
T1G4012036-FS / -FL	DC-3.5	120W	13	52
T1G4020036-FS / -FL*	DC-3.5	2x120W	13	52
T1G2028536-FS / -FL*	DC-2	250W	18	60
T1G4004532-FS / -FL*	DC-3.5	45W	16	54

^{*} In Development

Transmit / Receive RF Switch

RF switch loss directly affects NF and PAE

High-power switch options

- Asymmetrical RF switches: high power transmit path, lower loss receive path
- GaN T/R switches
 - High power handling capability (>100W) CW
 - Very low current (<6uA)
 - Low insertion loss (<0.7dB)
 - High RF power handling capability

GaN Low-Noise Amplifier Products

LNA	Frequency (GHz)	P1dB (dBm)	NF (dB)	SS Gain (dB)	TOI (dBm)	Tech	Export
TGA2611*	2-6	22	1	25	30	GaN25	EAR99
TGA2612*	6-12	20	1.5	25	29	GaN25	EAR99

^{*} Plastic overmold package planned for Q4 2013

Low noise figure with high input RF power survivability.

Do you still need a limiter?

Transmit Receive Functions on a Single MMIC

 Transmit, receive and control functions on a single MMIC delivers SWaP advantages

RF Package Types

- TriQuint's Cu-FlipTM process
- Surface mount packages
 - Air cavity QFN
 - Ceramic or LCP
 - Over-molded QFN
 - Rogers laminate
- High-power flange packages
 - Cu-Moly based
 - Plastic over-molded

CuFlip™ TriQuint's Cu-Bump Interconnect Technology

■ CuFlip[™] advantages

- Low inductance connection
- Reduces performance variability
- Potential board and die size reduction

Technology Advantage: BiHEMT and CuFlip™

BIHEMT

- Smaller, less complicated die
- Lower cost solution
- Provides path for higher integration

Conventional

BiHEMT + CuFlip™

Size reduction and performance increase with using enhanced process technology

Cu-Flip™

- More efficient PA
- Cooler operation due to lower thermal impedance (30-50%)
- Less manufacturing variation

Summary

- Power amplifier advancements result in SWaP improvements for both center feed and AESA radar
- GaN RF switches and high-survivability LNAs improve performance and decrease size of the overall radar
- Packaging drives lower cost unit price and low cost assembly

Thank You!

Dean White

TriQuint
Business Development Manager
dean.white@triquint.com
www.triquint.com

