

RADAR DEFENSE vs. AUTOMOTIVE

Larry Hawkins, Patrick Walsh, Jarrett Liner, Mike Curtin, Mike Mullins

FUNDAMENTAL GOALS OF RADAR

- We want to
 - Detect and track targets in the presence of noise, clutter, and other interference; and/or
 - Image terrain and targets
- The quality of the results of these operations is determined by
 - Detect: $P_D/P_{FA} \rightarrow$ Signal and interference statistics, Signal-to-Interference Ratio (SIR)
 - Track: precision and accuracy → SIR and algorithm
 - Image: "Sharpness" and contrast → Resolution, SIR, sidelobes
- ◆ The most basic purposes of radar signal processing are to improve SIR and resolution

Amplifiers Power Management Professors DSP

DEFENSE RADAR

$$D = \frac{c * t_D}{2}$$

$$D = Distance (m)$$

 $c = Speed of Light (m/s)$
 $t_D = Time of Flight (s)$

Amplifiers Fower Hanagement Procession Sp

AUTOMOTIVE RADAR

$$D = \frac{c * t_D}{2}$$

D = Distance (m) c = Speed of Light (m/s) $t_D = Time of Flight (s)$

Amplifiers Power Management Processor

RADAR DIFFERENCES

FREQUENCY MODULATION

Defense

- FMCW
 - PLL
 - DAC
 - DDS
- Pulse Doppler
- Doppler

Automotive

- FMCW
 - PLL
 - DAC
 - DDS
- **UWB**
- Pulse Doppler

WAVEFORM GENERATION FOR RADAR

- Digital to Analog Converter (DAC)
 - Complex and wide bandwidth waveform, non-linear frequency modulated waveforms
 - e.g. AD9129 5.6Gsample/s DAC is capable of generating signals across 1.4GHz of bandwidth
- Direct Digital Synthesis (DDS)
 - Linear frequency modulated sweep, frequency agile pulse generation
 - Vary Frequency, Phase or Amplitude
 - e.g. AD9914/15 with 1.4GHz Bandwidth
- In the L and S bands, both options can be used directly
 - Reduce system complexity, saving power, size, and weight

WAVEFORM GENERATION FOR RADAR - CONTINUED

- Fractional-N Phase Locked Loop (PLL)
 - Linear frequency modulated sweep, frequency agile pulse generation similar to DDS
 - Can operate in L to X band directly
 - e.g. ADF4159 Direct Modulation/Fast Waveform Generating, 13GHz, Fractional-N Frequency Synthesizer

Amplifiers Power Nanagement Processor

ARCHITECTURES: CLASSIC DEFENSE RADAR SIGNAL CHAIN COVERS ALL FREQUENCY BANDS OF INTEREST (L, S, C, X & KU)

Now: AD951X & AD952X part

Next 5 Years: AD9525 just makes it, need > 3GHz capability

- Reduced component count with increased focus on the DSP
 - Trends to higher converter sampling rates
 - Reduced mixing stages
- All Bands can be covered here as well as long as the converters and RF components can support the BW

DIRECT RF CONVERSION DEFENSE RADAR SIGNAL CHAIN

- Ideal solution is Direct RF conversion for all bands
 - Limited by analog BW of converters
 - Continues drive to maximize DSP
 - Minimum component count

FMCW AUTOMOTIVE RADAR FUNCTION BLOCKS, SAME FOR LSR AND HSR RADAR

PLL: ADF4158 (LSR)

ADF4159 (LSR+HSI

DAC: AD56xx (LSR)

AD974x (HSR)

ADAS (ADVANCED DRIVER ASSISTANCE SYSTEMS) RADAR Different Ranges, FOV Fields-of-View, and Purposes

Long Range

Adaptive Cruise Control FOV: +/-8° ACC: 150 to 200m

Short/Medium Range

Blind Spot Detection

Lane Change Assist

Cross Traffic Alert

Forward Collision Warning

Forward Collision Mitigation

Rear Collision Warning

Stop & Go

BSD: 10m LCA: 70m

CTA: 30m

FCW: 70m

FCM: 70m

RCW: 70m

S&G: 70m

FOV: +/-75°

FOV: +/-65°

TECHNOLOGY

OUTPUT POWER

Defense

→+10dBm to +50dBm

Automotive

+10dBm

POWER MANAGEMENT REQUIREMENTS

Defense

- Low Power Consumption
- Power Consumption High
- Phased Array Solutions Similar to Automotive Solutions

Automotive

- Low Power Consumption Required
 - Operates in Enclosed Module

PHASE NOISE REQUIREMENT

Defence

Range from Medium to High Performance

Automotive

Medium

The World Leader in High Performance Signal Processing Solutions

APPENDIX

DEFENSE RADAR EXAMPLES

Airborne Multi-Mode Fire Control

Air Surveillance Radar Sets (ASR)

Airborne Air and Ground Surveillance

Surface Movement Radar (SMR)

Radars Range from the Very Large

AN/FPS-85

AN/FPS 108 Cobra Dane

Ballistic Missile Defense Radars

PAVE PAWS

Arecibo (Puerto Rico) 305 m radio astronomy dish

AUTOMOTIVE RADAR EXAMPLES

2D and 3D Search

3D Air Defense

- 2D: AN/SPS-49 Shipboard
 - Frigates, AEGIS cruisers

- 3D: AN/SPS-48 Shipboard
 - AEGIS predecessor
 - Aircraft carriers, amphibious assault ships

AN/MPQ-64 Sentinel Air Defense

Weapons Locating Radar

◆ AN/TPQ-36, -37

Shipborne Air and Missile Defense

AN/SPY-1

 Airborne Multi-Mode Fire Control

 Airborne air and ground surveillance

Over-the-Horizon Radar

- ◆ HF (3 30 MHz)
- Utilizes ionospheric reflection

Ballistic Missile Defense

AN/FPS-115 ("PAVE PAWS")

 AN/TPY-2 Theater High Altitude Air Defense Radar

Other Military Applications

Radars

Instrumentation and Range Turntable Inverse SAR Imaging

GTRI ISAR range

AN/MPQ-39 (MOTR)

And, of course, imaging

Automotive Radar Frequencies

24GHz NB	24GHz UWB	26GHz UWB	77GHz	79GHz UWB
Worldwide	US/Canada Japan	US/Canada Japan	"Worldwide"	Singapore
	EU until 2013/ will be extended to 2022 but with reduced bandwidth			EU
different bandwidth EU: 200MHz (75cm) [450MHz] (33cm) US: 200MHz (75cm) JP: 200MHz (75cm)	US: 7GHz (2.2cm) JP+EU: 5GHz (3cm)	US: 1 GHz (15cm) JP: July 2010 5 GHz (3cm)	1 GHz (15cm) JP: 500MHz (30cm)	4 GHz (4cm)
20dBm	-41dBm	-41dBm	23.5dBm	-9dBm

FMCW - Frequency Modulated Continuous Wave Radar Principle (simplified, static condition)

- (1) $t_d = 2*D/c \rightarrow 1us \text{ at } 150m$
- $D = c^*t_s^*f_b/(f_s^*2)$
- (3) BW = $f_s * t_{dmax}/t_s$
- $BW = f_s^* 2^* D_{max} / (c^* t_s)$

- f_t: f_r: **Transmit Frequency**
- Receive Frequency
- Ď: Distance
- Time of flight for D
- **Beat Frequency**
- Sweep Frequency
- **Sweep Time**
- **Light Speed Constant**
- BW: Max AFE Bandwidth

Example:

$$f_s = 200MHz$$

$$t_s = 2ms$$

$$t_{dmax} = 150m$$

→ Bandwidth BW=100KHz

RADAR TECHNIQUES IN AUTOMOTIVE

Automotive Radar					
FM	Pulse Doppler Radar				
LSR-Low Speed Ramp → Low Bandwidth AFE					
~ 3-30ms	~ 20-200us	N - number of pulses			
Doppler Frequency is usually determined through variable slopes and/or FSK modulation. or CW sections	Increasing slope+ bandwidth makes Doppler Frequency negligibly, Velocity is measured by distance over time.	Velocity and distance are measure instantaneously.			
Baseband Frequency Range					
40KHz to 500KHz	1 MHz to 15MHz	Very different baseband processing concept			

Complete Tologomen Pluces of the Control of the Con

ADF4159 in FMCW RADAR

Pulse Compression Radar

- Radar Design is always a compromise
 - Unambiguous range measurements require a low PRF and long pulse BUT range resolution requires a short pulse
 - Unambiguous velocity (doppler) measurement requires a medium to high PRF <u>BUT</u> this will result in ambiguous range measurements
 - Short pulses increase bandwidth requirements in an already crowded spectrum
 - Short pulses also increase peak power requirements from the transmitter and invariably lead to range restrictions
- Pulse compression can overcome some of these compromises at the expense of processing complexity
 - Detection range capability of a low PRF uncoded system
 - Maintains or even exceeding the range resolution of a narrow uncoded pulse
 - Using longer pulses limits required peak power but without sacrificing range resolution
 - The average power of the transmitter can be improved without increasing PRF and compromising unambiguous range
 - Less vulnerable to interfering signals that differ from the coded transmitted signal

Pulse Compression Radar

- Pulse Compression Ratio (PCR)
 - Defined as the product of the modulation bandwidth (B) and the uncompressed pulse width (T)
 - PCR of several 100 is typical
- Effective transmitted power is PCR x Transmitted Power (note: this is after processing in the receiver)
- Typical Modulation Techniques
- Linear Frequency Modulation (or chirp)
 - The frequency is swept over the duration of the pulse
 - The matched pulse compression filter in the receiver introduces side lopes that cause range errors but can be minimised by applying a weighted filter at expense of detected pulse amplitude and increased bandwidth
- Phase coded waveforms
 - A long pulse is subdivided into a number of shorter pulses, each is transmitted with a particular phase
 - It is common to use binary coding, typically a Barker code length of 13
 - Compression ratio not as good

Benefits of Phased Array Radars

- Phased array radars can, in a single antenna, do the jobs of several purpose built antennas – example: track while hold
- There is no longer the need to mechanically point the antenna in the direction of the target
- Phased arrays can rapidly scan a small sector of sky to increase the likelihood of detecting a small and fleeting target over traditional rotating types
- Phased array's have the ability to almost instantaneously change beam direction and shape adding a new dimension to tracking
- Phased arrays allow the system to place a "null", an area of zero receiver sensitivity, over a jammer
- Cons only scan 120deg, need 3 for 360deg so cost goes up

6GHz Quadrature Demodulator

Pros

- Direct Conversion
 - Up to 6GHz RF converted to IF in single stage
 - Very Linear
- Proven performance
 - Used in other platforms
 - Low NF
 - Perfect for Radar
- Ease of use
 - Single 5v supply
 - Dual Channel
- Showcase many of ADI's newest and top performing RF components
- Cons
 - Output Impedance.
 - 450Ω Baseband output Impedance
 - RF Input PCB loss
 - PCB bandwidth may be less than desired RF input frequency.
 - PCB layout

4.5GHz Dual Differential Amplifier

Pros

- High Performance
 - Up to 4.5GHz RF input
 - Very Linear
 - Low NF
 - ◆ Up to 16dB gain
- Proven performance
 - Used in other platforms
 - Perfect for Radar
- Ease of use
 - Single 5v supply
 - Dual Channel
- Showcase many of ADI's newest and top performing RF components
- Cons
 - Input/Output Impedance.
 - 200Ω output Impedance
 - 150Ω input Impedance

Amplifiers Power Management Professor

RadX Board

On-Board Power Management

On-Board LO/Clock

