Microwave Journal
www.microwavejournal.com/articles/19662-bespoon-and-leti-establish-world-record-distance-measurement-on-a-single-chip

BeSpoon and Leti establish world record distance measurement on a single chip

April 22, 2013

BeSpoon, a fabless semiconductor company, and CEA-Leti have demonstrated an IR-UWB integrated circuit able to measure distances within a few centimeters’ accuracy, and have established a world-record operating range at 880 m (standard regulation) and 3,641 m (emergency situations).

Impulse radio ultra-wideband (IR-UWB) is recognized as an ideal technology for indoor applications, both in terms of accuracy and robustness. It measures distances within a few centimeters’ precision and is not affected by walls or people passing by.

The BeSpoon and Leti collaboration overcame two challenges sometimes associated with this technology: the difficulty integrating it on a single chip and its perceived limited operating range.

The chip jointly designed by BeSpoon and Leti features a full-blown IR-UWB CMOS-integrated transceiver that is able to perform accurate distance measurements. The standalone chip (RF front-end and digital base band) is designed for a straightforward integration within smartphones or set-top boxes.

Furthermore, BeSpoon has demonstrated the capability to comply with the strict regulation of IR-UWB, and yet operate up to 880m in line of sight. A world record distance measurement has been established at 3,641 meters, in compliance with the regulation for emergency situations.

“Indoor location is only beginning and, very soon, robustness and precision will be key to offering great new services,” said Jean-Marie André, BeSpoon CEO. “Mobile geofencing is another exciting development of our technology.”

“This achievement capitalizes on the UWB expertise Leti has developed over the past 12 years,” said Laurent Malier, CEO of Leti. “The world record distance measurement is a major milestone in our partnership with BeSpoon, and a source of great satisfaction for the people involved in this collaboration.”