White Papers

The Challenges of Using Direct Reading Attenuators and Current Solutions

One of the most challenging things about working with millimeter-wave technology is getting accurate measurements. Uncertainty can be introduced at many points during testing, so selecting the right test equipment is an important decision.

5G Antenna Design for 5G Communications

While some of the challenges that lie ahead to meet the 5G requirements may seem daunting, simulation can already be used to develop understanding and explore innovative solutions. Altair FEKO offers comprehensive solutions for device and base station antenna design, while WinProp will determine the requirements for successful network deployment.

Millimeter-Wave Beamforming: Antenna Array Design Choices & Characterization

This paper introduces the fundamental theory behind beamforming antennas. In addition, calculation methods for radiation patterns with simulations results, as well as some real world measurement results for small linear arrays are shown. Due to the likely bandwidths in such applications, a non-standard way of graphical representation is proposed.

When Choosing Test Equipment, Don’t Forget the Interface

The software interface is an often overlooked, yet critical item in putting together a test system. It’s not enough for a piece of equipment to work well in isolation. In a production environment it must interact with and take commands from other modules, and in a laboratory setting it must work seamlessly with multiple hosts. Understanding some of the potential interface barriers and how to remove them is an important first step before evaluating any piece of test equipment.

LTE-Advanced Pro Introduction eMBB Technology Components in 3GPP Release 13/14

Concrete and confined use cases such as mobile voice in 2G and mobile data in 4G dominated the definition of past cellular technologies. In contrast, 5G introduces a paradigm change towards a user/application centric technology framework that aims to support the following triangle of important use case families. The enhanced mobile broadband (eMBB) use case represents the well-known continuation of the ever-increasing requirement to support both higher peak data rates per user and more system capacity. Learn more about this hot topic in our Whitepaper.

Passive RF and Microwave Beamformer Networks

Beamforming networks for antennas have evolved since the 1960’s. Early designs were typically fixed-beam architectures, although newer configurations include complex adaptive beamforming networks. This brief presentation reviews the origins of the technology, and offers several example circuit topologies of passive microwave beamformers. 

Antenna Beam Characterization of 5G Mobile Devices and Base Stations Using the R&S®NRPM Over-the-Air (OTA) Power Measurement Solution

The application note contains theoretical background on OTA power and pattern measurements. It gives step-by-step instructions for the verification of the power level and the radiation pattern of a device under test (DUT) in comparison to a golden device, and it presents an approach for verifying the accuracy of beam steering.

5G Primer for MIMO/Phased-Array Antennas

Evolving communication systems are driving developments in the RF/microwave industry. The large umbrella of 5G focuses on supporting three main technologies:
  • Enhanced mobile broadband, which is the natural development of long-term evolution (LTE)
  • Massive machine-type communications, also known as the industrial internet of things (IIoT)
  • Ultra-reliable, low-latency communications providing mission-critical infrastructure for services such as transportation, public safety, medical, and more.

LTE UE Receiver Performance Measurements

LTE user equipment (UE) receiver performance has significant impact to cellular radio network coverage and capacity. It determines the maximum data throughput across the air interface between the LTE base station (eNB, evolved node B) and the mobile network subscriber UE, thus it determines the total capacity across the air interface. Therefore, it is one of the most important measurements to verify the actual receiver performance of individual devices, and a key metric to compare different devices, in particular.

Z Power Resistors – High Power and High Frequency without Compromise

The Z-Power style resistor gives a better frequency response with similar thermal properties in the same size package. This technology offers designers exciting combinations with ideal thickness, package, aspect ratio and terminal geometry selections. Learn more about the advantages to both RF performance and power handling with Z-Power configured components.