RF Measurements Application Note

Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before. Although they are in the class of general purpose measuring instruments they are capable of many RF and lower microwave frequency measurements. This article focuses on some examples of common RF measurements that can be performed with these modular digitizers.

IMS2015 MicroApps CD - free while supplies last!

The MicroApps program at the IEEE MTT-S International Microwave Symposium (IMS2015) held in Phoenix, Arizona, had nearly 80 presentations covering the hottest topics in RF/uW.  If you missed this important event, you can still get an official copy of the CD containing the presentation material - compliments of Keysight Technologies. Order now and as a bonus, get access to the content presented at the inaugural RF Boot Camp session!

Fundamentals of Arbitrary Waveform Generation, AWG Primer

Today's AWGs can address a broad range of applications and test cases. This primer discusses characteristics and fundamentals of arbitrary waveform generation and the different implementations available in the market. It also shows examples how to generate digital, multi-level and PAM4 signals, wireless and modulated waveforms, multi-carrier as well as coherent optical signals. It explains the different methods of wideband IQ modulation and up-conversion, calibration and correction, and wrap-around handling for RF/wireless signals.

IMD Measurements with IMDView MS4640B Series Vector Network Analyzer

Intermodulation distortion (IMD) is an important consideration in microwave and RF component design. A common technique for testing IMD is the use of two tones. Two-tone testing for IMD has been used to characterize the non-linearity of microwave and RF components, both active and passive, for a very long time. Traditionally, this has been done at fixed frequencies using multiple signal generators, a combiner, and a spectrum analyzer. Because IMD varies with frequency, these measurements must be repeated at various frequencies to get a clear picture of what a deviceâ??s true behavior is across its specified operating range. This can be a time consuming process using the traditional signal generators and spectrum analyzers. The Anritsu VectorStar MS4640B Series Vector Network Analyzers can be used to quickly and accurately make S parameter, gain compression, fixed and swept frequency IMD measurements using a single cable connection to the DUT.

Advantages and Benefits of OpenRFM

OpenRFM describes a standards-based, modular open architecture that proposes design, test, and control practices for interfacing RF and digital subsystems in an embedded computing architecture. It enables the integration of RF and microwave elements within electronic warfare (EW), radar and signals intelligence (SIGINT) sensor processing chains by standardizing electromechanical and thermal interfaces, software, and control plane protocols. The goal is to help enable prime contractors and the DoD to refresh existing and develop future applications more efficiently and affordably.

Speed Time to Market with Consistent Measurements from R&D Through Manufacturing

When multiple instrument form factors such as benchtop and PXI instruments are used in your design and manufacturing processes the challenge is to achieve reliably consistent measurement results while using the best instrument for a specific purpose. This application note provides a no-sacrifice-required solution for achieving consistent measurement results that correlate across instrument types, throughout the product development cycle.

New Pulse Analysis Techniques for Radar and EW

Pulse signals are widespread in radar and other EW applications and must be accurately measured for manufacturing, design of countermeasures, and threat assessment. However, pulse measurements are an especially challenging area for signal analysis due to a combination of factors such as wide pulse bandwidth, pulses that are difficult to detect, and increasingly complex signal environments. This application note discusses the best tools for different types of pulse analysis, along with display and analysis techniques for various signals and measurement goals.

Flexible RF Test Solutions Deliver Reliable Internet of Things (IoT)

The Internet of Things (IoT) refers to the use of smart and connected electronic devices to enable greater efficiency and productivity in our daily lives. These devices permeate homes, vehicles, buildings, manage security, safety, energy, and inventories, and many other areas. Keysight flexible RF test solutions help you test IoT devices and get the most from your budget. We have prepared a series of application notes to address the test challenges of IoT devices.

Advancing High Power RF Semiconductor Test with the NI STS

Big Iron ATE isn't ready for the evolving RF test market. Its costs are simply too high and its flexibility too low. Discover how Ball Systems, a National Instruments Alliance Partner, integrated a fully modular RF test measurement system, for a new product line of WLAN Front End Modules (FEMs), covering multiple wireless bands and achieving high power compression test requirements in much less development time and at a substantially lower cost than a traditional solution.

Focusing in on W-band Absorbers

Originally designed for use in military applications to deter enemy radar, electromagnetic absorbing materials and the technologies with which they are often packaged have advanced considerably. Absorbers have now found use in countless applications - from reducing capacitive coupling between an integrated circuit and heat sink to attenuating common mode currents along a trace or cable. In particular, automotive technologies have improved significantly, with such features as collision avoidance, lane-changing assist, and automatic parking becoming integrated into platforms by nearly every major automobile manufacturer.