Measurement Considerations for Automotive Radar

Richard Overdorf

Agilent Technologies

Automotive Radar – What is it?

Adaptive Cruise Control (ACC)

Blind Spot Monitoring

Lane Change Assist

Rear traffic crossing alert

A Quick Comparison to "Traditional" Radar Development and Test

Traditional Systems:

- Long range
- Electronic warfare
- Lots of signal processing
- Large budget programs
- Low volume production

Automotive:

- Long range not a primary design challenge
- Interference is typically unintentional
- Low cost
- High Volume
- Regulation

Atmospheric Properties

Source: "Millimeter waves will expand the wireless future" by Lou Frenzel, Electronic Design Mar 2013

Millimeter Frequencies

Traditionally the 30 to 300 GHz spectrum (i.e., wavelength 10 ~ 1 mm) Research now extending to 500 GHz, 1 THz, and beyond

Benefits:

- Small antenna size
- High resolution
- Uncluttered spectrum
- Wide bandwidths
- Advantageous use of atmospheric properties

Measurement Issues:

- Small and more fragile cables, adapters and accessories
- Costs increases
- Lack of power standards

Millimeter Signal Generation

Methods of generating signals

- Multiplication
- Upconversion

Considerations

- Frequency range requirements
- Output power requirements
- Modulation and bandwidth requirements
- Minimizing spurious signals

Signal Generation

Multiply a Microwave Signal to Achieve Millimeter Frequencies

Signal Multiplication Pros and Cons

Pros

- A good choice for CW and pulse modulated signals
- Test setup simplicity
- Fixed or variable output power
- Commercially available modules from several manufacturers covering waveguide bands up to 1 THz and above

Cons

- Saturated output power
- Pulse modulation rise/fall times may be altered
- FM and ΦM deviation is multiplied by the multiplication factor
- AM modulation is severely distorted
- Not suitable for most digitally-modulated signals
- Creates harmonic, sub-harmonic and non-harmonic spurious signals,
 -20 dBc typical

PSG Phase Noise vs. Frequency due to 20log(n) Multiplication (SxxMS-AG)

Signal Upconversion Pros and Cons

Pros

- Much better choice for modulated signals
- Can support wide bandwidth signals
- Reasonable output power

Cons

- Higher-complexity test setup two sources required
- Limited choices among off-the-shelf upconverters
- Very limited amplitude control
- Creates images, harmonic, sub-harmonic and non-harmonic spurious signals

Signal Generation

Upconverting a Microwave Signal to Achieve Millimeter Frequencies

Transmitter Output: +5 dBm 57 ... 66 GHz

Millimeter Signal Analysis

Methods of analyzing signals

- External harmonic mixers
- Smart mixers
- Downconversion

Considerations

- Frequency range requirements
- Conversion loss and sensitivity requirements
- Modulation and bandwidth requirements
- Minimizing spurious signals

Signal Analysis

Using a Harmonic Mixer to Extend the Spectrum Analyzer Frequency Range

Diplexer built-in to PXA/EXA allows LO and IF signals to share the same RF cable

Some harmonic mixers require DC bias

Signal Identification

Signal Identification OFF

Signal Identification ON using *Image Suppress* function

Signal Analysis

"Smart" Mixers Offer Improved Performance and Functionality

USB connection provides:

- Automatic ID
- Harmonic number
- Conversion loss data
- LO path loss

	M1970V	M1970V	
M1970E	Option 001	Option 002	M1970W
60 to 90 GHz	50 to 75 GHz	50 to 80 GHz	75 to 110 GHz
-6/-8	-6		-8
9.42 to 12.56 GHz	8.39 to 12.56 GHz	8.39 to 13.39 GHz	9.42 to 13.80 GHz
27 dB	23 dB		25 dB
2.2			
20 dBm			
20 dBm (100 mW)			
24 dBm with < 1 µsec pulse (average power: + 20 dBm)			
15 dB			
–1 dBm			
2.6			
40 dB	36	dB	38 dB
–136 dBm	-140	dBm	–138 dBm
	60 to 90 GHz -6/-8 9.42 to 12.56 GHz 27 dB 24 dB	M1970E Option 001 60 to 90 GHz 50 to 75 GHz -6/-8 -9.42 to 12.56 GHz 8.39 to 12.56 GHz 27 dB 23 20 d 20 dBm (* 24 dBm with < 1 μsec pulse -1 d 2. 40 dB 36	M1970E Option 001 Option 002 60 to 90 GHz 50 to 75 GHz 50 to 80 GHz -6/-8 -6 9.42 to 12.56 GHz 8.39 to 13.39 GHz 27 dB 23 dB 2.2 20 dBm 20 dBm (100 mW) 24 dBm with < 1 μsec pulse (average power: + 20 dBm)

Signal Network Analysis

High Frequency up to THz region

No longer just traditional scalar measurements:

- Non-linear analysis
- Materials measurements
- Frequency range to THz
- Integration with design software

Design and Simulation

MMIC's & Baseband Design Tools

Design tools should provide:

- Accuracy
- Standardized design capability
- Integrated test
- Path from design to FAB

Analog Source - LO

Conclusions

In the future the automotive radar market is expanding into higher frequencies

High frequency measurement challenges can be addressed with technologies discussed:

- Banded up/down converters or multipliers dividers
- "Smart" external mixers
- Improved Phase Noise
- Wider bandwidth analyzers