

Power Dividers, Couplers and Combiners

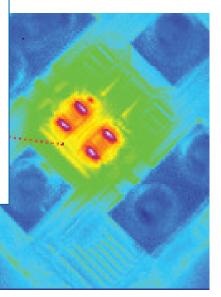
A Webinar Presented by Dr. Bob Froelich Of Besser Associates, Inc. November 20, 2012

Mini-Circuits Company Overview

- Founded: 1969
- Headquarters: Brooklyn, NY
- Multiple Design Centers
 - Brooklyn
 - San Jose
 - Israel
 - Malaysia
 - India
- Multiple Core Technologies
 - Core & Wire
 - Microstrip
 - LTCC
 - Semiconductors
- Over 10,000 active products
- Over 20,000 active customers

Excellence in Performance

Proven strategies for producing the world's best RF MMIC's



ISO 9001:2000

our promise to our customers • meet stated requirements • exceed expectations • continuously be improved

ISO 14001:2002 our commitment to the environment • regulatory compliance • pollution prevention • continual improvement

Mini-Circuits

28 Product Lines from DC to 40 GHz

- Adapters
- Amplifiers
- Attenuators
- Bias Tees
- Cables
- Couplers
- Custom Assemblies
- DC Blocks
- Designer Kits
- Electronic Line Stretchers
- Filters
- Frequency Mixers
- Frequency Multipliers
- Impedance Matching Pads

- Limiters
- Modulators / Demodulators
- Oscillators
- Phase Detectors
- Phase Shifters
- Portable Test Equipment
- Power Detectors
- Power Splitters / Combiners
- **RF Chokes**
- Switches
- Synthesizers
- Terminations
- Transformers RF/IF
- Voltage Variable Equalizers

Power Splitters—The Industry's Largest Selection

- 2 kHz to 18 GHz
- 2-way through 48-way
- 0°, 90°, or 180° phase
- Up to 300 W power
- LTCC, core & wire, semiconductor, microstrip, stripline, resistive, quadrifilar
- Packages as small as 0805
- Hundreds of models in stock & ready to ship
 - Hundreds more ready for fast turnaround
 - All available for rapid customization

Ultra Wide Band Couplers and Power Taps

- 5 kHz to 12 GHz
- Directional, Bidirectional, DC pass, DC block
- Up to 250 W power
- LTCC, core & wire, microstrip, stripline, air line, semiconductor
- Packages as small as 1206
- Hundreds of models in stock
 - Hundreds more ready for fast turnaround
 - All available for rapid customization

A Better Way to Find What You Need

Search <u>millions</u> of live test data points from <u>thousands</u> of products, to meet or exceed your performance requirements:

- Current catalog models
- Previous custom models
- Development models

Product lines included:

- Amplifiers
- Frequency Mixers
- Directional Couplers
- Power Splitter/Combiners
- **RF Transformers**
- Filters
- VCOs
- Synthesizers
- More to come

Package Style	OPlug-In OSur	Plug-In OSurface Mount			OConnector				
LO/RF Frequency (MHz)	Low 1700	High	21	70					
LO Power Level (dBm)	Low	High			(Accepta	able LO Po	ower Range)		
Conversion Loss (dB)	Max. 8								
IP3 (dBm)	Min. 30	30					18 Items Found		
LO Isolation (dB,Min.) at LO Frequency (MHz)	Model Name	LO/RF Frequency [MHz]		IF Frequency [MHz]		LO Power Level	Case Style	Price	
		Low	High	Low	High	[dBm]			
Max. VSWR(:1) at	SORT ↓ ↑	↓ ↑	† †	↓ ↑	ψ Ť	† †	† †		
RF/LO Frequency (MHz)	HJK-212H+	1800	2100	10	270	14-20	TTT881		
	LAVI-252VH+	1850	2500	60	750	17-23	CK605		
IF Port VSWR(:1) at IF Frequency (MHz)	LAVI-362VH+	100	3100	500	2500	19-25	<u>CK605</u>		
	SYM-20DHW+	10	2000	10	1800	14-20	<u>TTT167</u>		
	HJK-ED10324E/3A	1700	2100	10	270	14-20	<u>TTT881</u>		
	HJK-ED10373B	1200	3500	50	600	12-18	<u>TTT167</u>		
	HJK-ED11744/2	550	3160	10	500	15-21	TTT167		
	HJK-ED12286/1	700	2700	0.50	1500	14-20	<u>TTT167</u>		
	HJK-ED8833	200	2000	5	900	14-20	<u>TTT167</u>		
	HJK-ED9088	1910	1990	203.8	274	13-19	<u>TTT167</u>		
	HJK-ED9193/1	1532	2677	10	600	14-20	<u>TTT167</u>		

...and see all the models that match,

(as well as any close calls) in a snap!

Mini-Circuits

Power Dividers, Couplers and Combiners

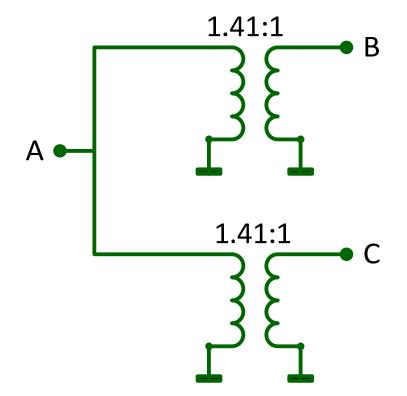
A Webinar Presented by Dr. Bob Froelich Of Besser Associates, Inc. November 20, 2012

Overview

- Power dividers, combiners and directional couplers are passive structures that divide RF input power among several outputs or combine power from several inputs.
- Power Dividers and Combiners
 - Used to split input power into roughly equal outputs, or vice-versa.
- Directional Couplers
 - Used to sample a fraction of input power and/or to separate forward and reverse traveling waves.

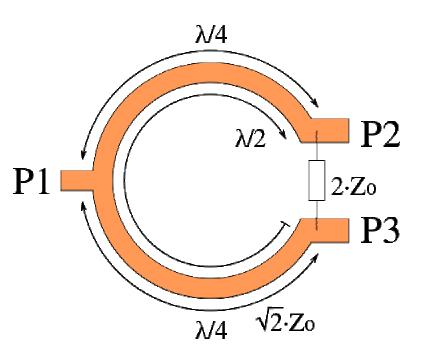
Power Dividers/Combiners

- Goal: Distribute power from one input among several outputs, or combine power from several inputs to one output.
- Problems for RF and microwave designs
 - Impedance match
 - Isolation
 - Phase relationships among signals

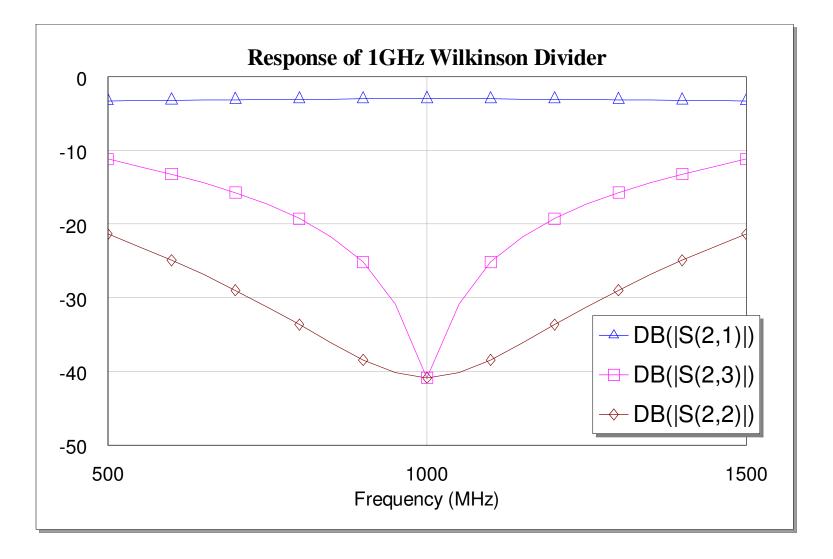


Transformer Power Dividers

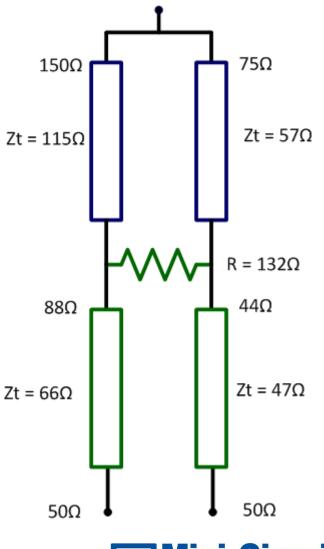
- Turns ratio of √2 doubles the impedance connected at B or C.
- Useful to divide or combine two signals.
- Frequently made using 90° sections of transmission line.
- Limitations
 - Matched in even mode only (same voltage at ports B and C).
 - B and C are not isolated.

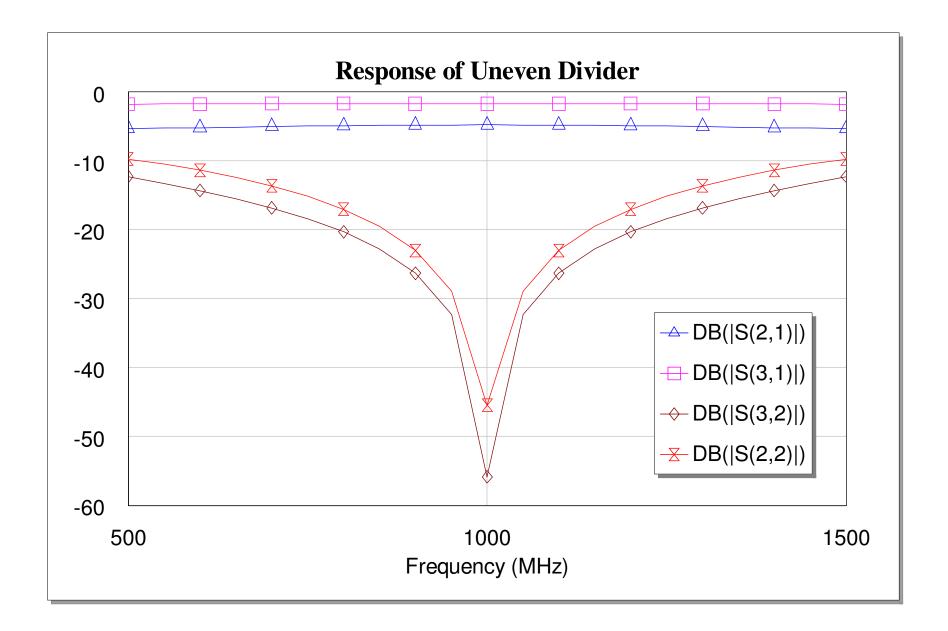


Adding Isolation: Wilkinson Divider

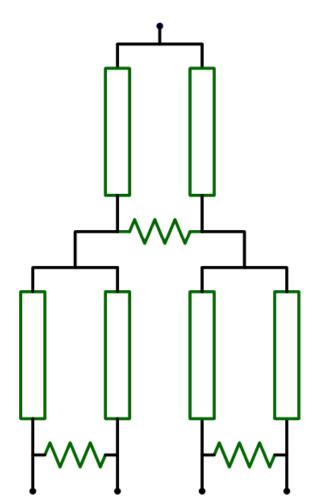

- When the signals at P2 and P3 are the same, the resistor has no effect.
- When P2 and P3 are 180° out of phase the power is taken up by the resistor.
- All ports are matched, and P2 and P3 are isolated from each other.

Unequal Power Division is Possible


- Transformed values must combine in parallel to 50Ω .
- Power division is inverse to the transformed impedances.
- Example:
 - Transform 50Ω loads at P2 and P3 to 150Ω (P2) and 75Ω (P3).
 - 1/3 of input power goes to P2 and 2/3 to P3.
- But the output voltages at are unequal, so we can't add an isolation resistor like before.

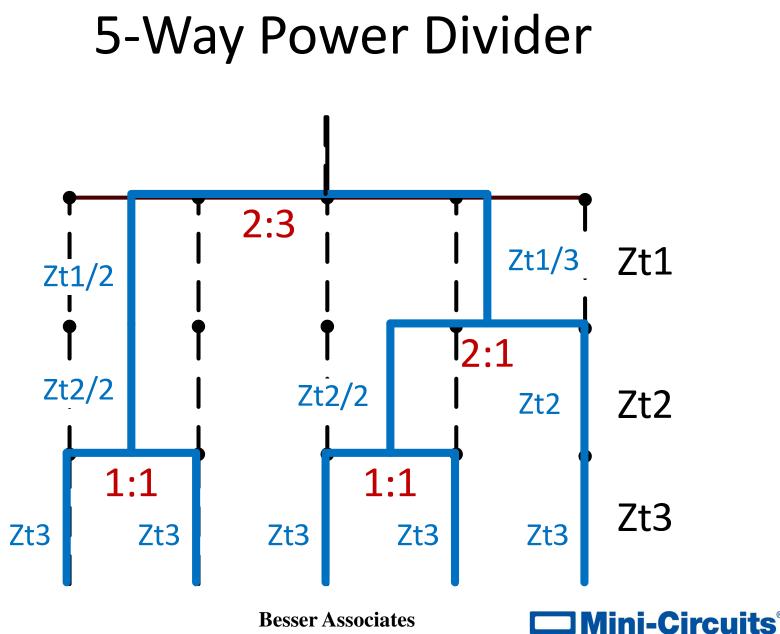

2:1 Divider with Isolation

- An isolation resistor requires equal voltage on both sides of the divider.
- Equal voltages with 2:1 power ratio implies 2:1 impedance ratio.
- Transform impedance in two steps:
 - 50Ω (at bottom) to intermediate levels with 2:1 ratio.
 - From there to 75 and 150Ω (at top).
 - Resistor value is the sum of the intermediate impedances.



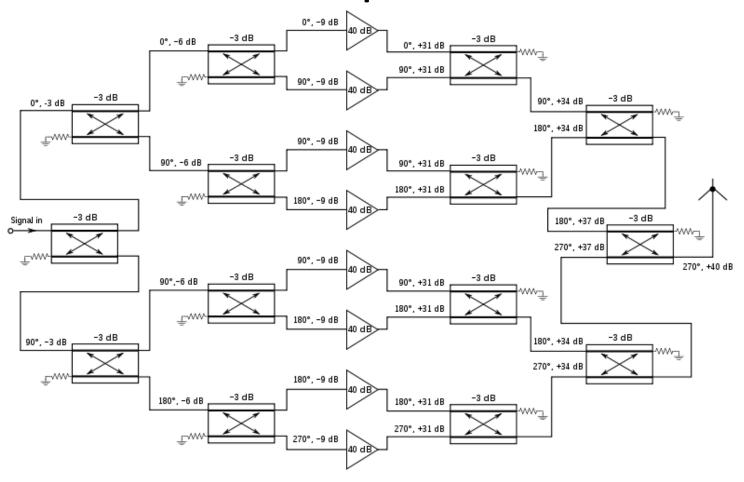
N-Way Power Dividers

- One-to-many:
 - N outputs can come together at one input using transformers that map Zo loads to N Zo at input.
 - If N > 2, it's impossible to connect isolation resistors in a 2-dimensional network.
- Two-Way Steps:
 - If N is a power of 2, branch out with Wilkinson dividers.
 - If N is not a power of 2, it still may be possible to use unequal 2-way dividers and achieve high isolation.


http://www.microwaves101.com/downloads/Robots_versus_Dinos.pdf

Besser Associates ©Besser Associates, Inc. 2012 All rights reserved

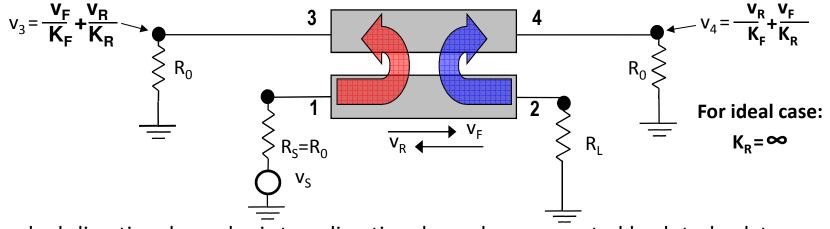
AS 9100 ISO 9001 ISO 14001 CERTIFIED


Power Combiners

- Power combiners have N inputs and one output.
- Often used to
 - Combine the outputs of several amplifiers.
 - Combine received signals from several antenna elements.
- Biggest difference is in the power rating of the isolation resistors.
 - Power divider: Resistors dissipate power if the loads are reflective. A low power rating is often ok.
 - Combiner: Resistors dissipate power if the sources are not balanced in magnitude and phase. A large power rating is often required.

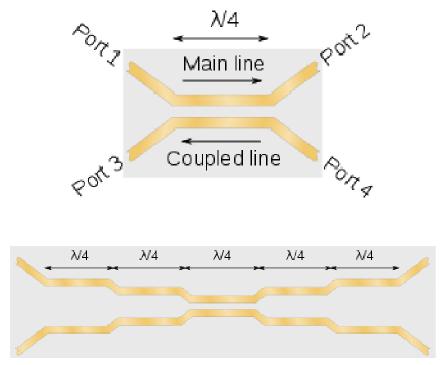
Dividing and Combining in a Power Amplifier

Directional Couplers


- Directional couplers have an arrangement of two transmission lines so that energy can "leak" from one line to the other.
- Often used to sample off a small portion of the signal power.
- Couplers have a directional property that is useful in many measurements.

Directional Couplers

•Forward and reverse traveling waves can be observed by the use of a directional coupler.



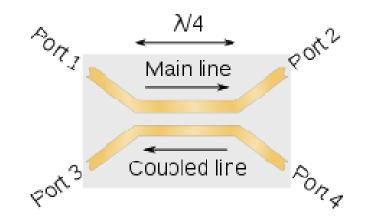
The dual-directional coupler is two directional couplers connected back-to-back to

minimize "leakage" between Ports 3 and 4.

Couplers in Microstrip or Strip Line

 Operating band is centered where the sections are 90^o long.

 Multi-section coupler has wider bandwidth.

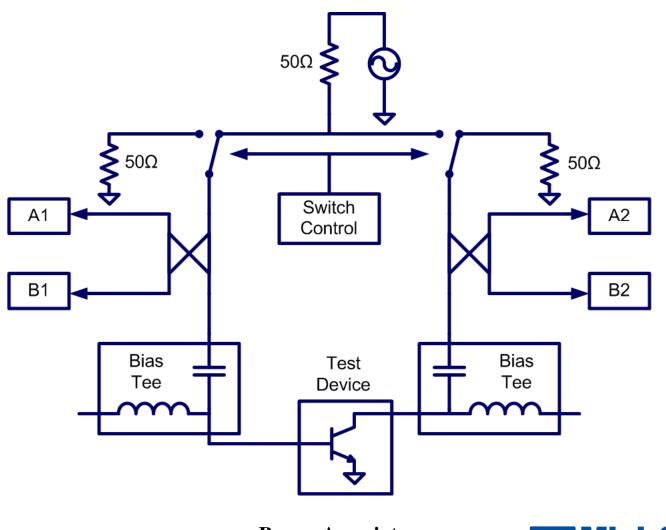


Coupler Specifications

- With ports numbered as in previous slides, coupler specifications are
 - Loss:

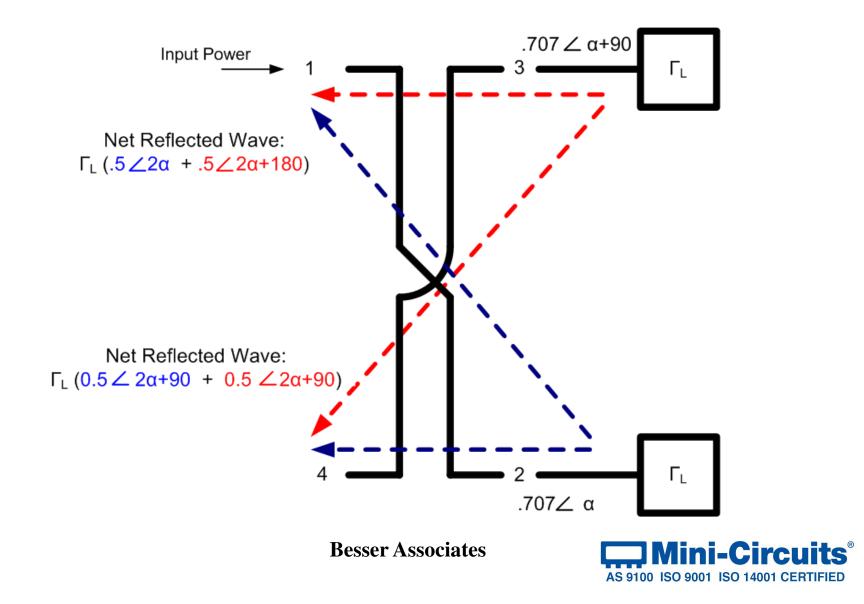
input pwr at 1 / output pwr at 2

- Coupling: input at 1 / output at 3
- Isolation:
 input at 1 / output at 4
- Directivity:
 Isolation / Coupling
- Usually all four of these are expressed in dB.

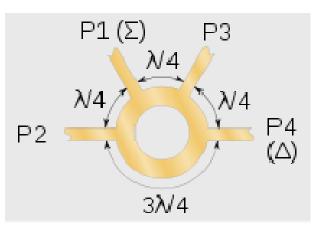

Measuring Reflections

- Connect an unknown load at port 2 and send OdBm into port 1. Assume low loss.
- A sample of reflected power from port 2 appears at port 4.
- Power of reflection sample: 0dBm – Return Loss – Coupling
- Power leaking from 1 to 4: 0dBm – Isolation
- Compare the sample to the leakage: Sample - Leakage = Directivity – Return Loss

Network Analyzer System


Using Phase Relationships

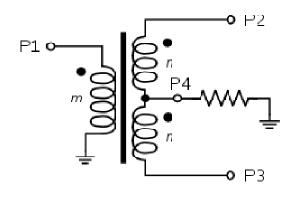
- In many couplers there is a 90^o (quadrature) phase relationship between the through and coupled paths.
 - "Balanced amplifiers" use 3dB quadrature couplers to cover up input and output mismatch.
- Power dividers have definite phase relationships between the two outputs.
 - Usually 0° or 180° .
 - Can add a length of line to one side of a divider to make this 90°, 270°, etc.
 - Useful in mixers, phased arrays, etc.

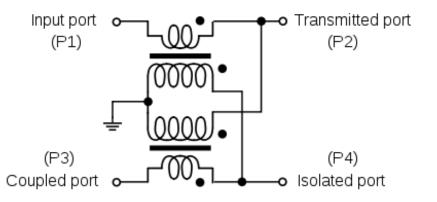


Using a 3dB Quadrature Coupler

Other Phase Relationships

- Hybrid ring ("rat race") coupler
 - Input at P1 divides between
 P2 and P3 with equal phase.
 - Input at P4 divides between P2 and P3 with 180^o phase difference.
 - P1 and P4 are isolated.
- Branch line coupler
 - Line sections are 90^o long at center frequency.
 - Input at P1 divides between P2 and P3 with 90^o phase difference.
 - Two-section coupler shown.





Dividers and Couplers Made from Transformers

 Transformer with center-tapped secondary can act as a 180^o power divider.

 Cross-coupled transformers form a directional coupler.

http://michaelgellis.tripod.com/direct.html

Thank you for Attending !

For more information on this subject and more, please consider attending a future Besser course. Please visit **www.BesserAssociates.com** for our course schedule or contact us at **info@besserassociates.com**

A special thanks is due to today's sponsor Mini-Circuits, online at <u>www.minicircuits.com</u>

