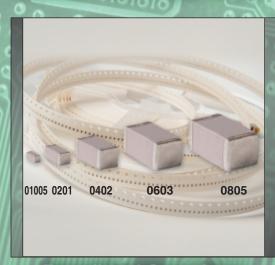


0805



RF & Microwave Capacitors

PPI470

3838

Custom Assemblies

PPI 160aF±2%

7676

HF/UHF Power Applications

6040

PPI BOpF±83

1313

Broadband Capacitors - Up to 110GHz

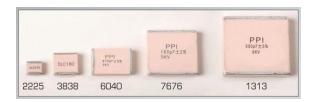
www.PassivePlus.com

- New State-of-the-Art Manufacturing Facility
 - over 130,000 square feet of NEW manufacturing area.
- Established 1988
- ISO-9001 Certified
- ISO-14001 Certified
- MRI-Non-Magnetic Components
- S-Level Reliability
- Our products have been widely used in various RF/Microwave Communication Systems, MRI Medical Systems, Broadcast Equipment and various Military Applications

Passive Plus, Inc. World Headquarters Huntington, New York USA Ph: (631) 425-0938 Fax: (631) 425-0847 sales@passiveplus.com www.passiveplus.com

RF/Microw	ave Low ESR ESL (NP0/P90) (Available in Non-Magnetic)	1
0505C/P	(.055" x .055")	3
1111C/P	(.110" x .110")	10
2225C/P	(.220" x .250")	17
3838C/P	(.380" x .380")	23

Power Transmitter Capacitors (Q>10,000)


UHF/RF Hig	gh-Q Ceramic Capacitors (Available in Non-Magnetic)	29
6040C	(.600" x .400")	31
7676C	(.760" x .760")	36
1313C	(1.30" x 1.30")	41
Custom Ca	pacitor Assemblies (Available in Non-Magnetic)	45

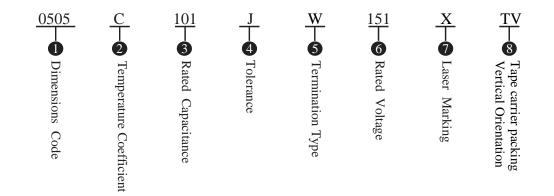
EIA Low ESR Microwave Capacitors

RF/Microw	ave NP0	49
0201N	(.020" x .010")	51
0402N	(.040" x .020")	57
0603N	(.060" x .030")	63
0708N	(.070" x .080")	69
0805N	(.080" x .050")	75
1111N	(.110" x .110")	81
X7R RF B	y-Pass Capacitors	88
0505X	(.055" x .055")	88
1111X	(.110" x .110")	90
2225X	(.220" x .250")	92

EIA High Q Non-Magnetic Multilayer Ceramic Capacitors	94
EIA X7R Non-Magnetic Multilayer Ceramic Capacitors	100
Laser Marking	105
Design Kits	106
Broadband Capacitors	112
01005BB (.010" x .005")	113
0201BB (.020" x .010")	114
0402BB (.040" x .020")	116
0805BB (.080" x .050")	118
Broadband Application Note	119
Notes	134

Soldering	Guide
-----------	-------

Traditional High Q (> 10,000) Low ESR Capacitors (NPO & P90 TC)


Product Features

High Q, High Power, Low ESR/ESL, Low Noise, High Self-Resonance, Ultra-Stable Performance

Typical Applications Field

Wireless Broadcasting Equipment, Mobile Base Stations, GPS Portables, Medical (MRI coils), Radar

Part Numbering Overview

① Dimensions Code

unit: inch (millimeter)

	0505	1111	2225	3838
Length	0.055+.015~010	0.110 +.020 ~010	0.220 +.020 ~010	0.380 +.015 ~010
	(1.4+0.38~-0.25)	(2.79 +0.51 ~ -0.25)	(5.84 +0.51 ~ -0.25)	(9.65 +0.38 ~ -0.25)
Width	$.055 \pm .010$.110±.010	$.250 \pm .015$.380±.010
	(1.4 ± 0.25)	(2.79±0.25)	(6.35 ± 0.38)	(9.65±0.25)
Thickness	.057(1.45) max	.10(2.6) max	.165(4.19) max	.177(4.5) max

② Temperature Coefficient: C: 0±30ppm/°C, P: +90±20ppm/°C.

③ Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point.

Capacitance greater than 10pF; for example: 101=100pF, the third number is the power of 10.

④ Tolerance

Code	А	В	С	D	F	G	J	K	М
Tolerance	$\pm 0.05 \text{pF}$	$\pm 0.1 \text{pF}$	$\pm 0.25 pF$	$\pm 0.5 pF$	$\pm 1\%$	$\pm 2\%$	$\pm 5\%$	$\pm 10\%$	±20%

⑤ Termination Type

Code	W	Р	L
Туре	100% Sn Solder over Nickel Plating	100% Sn Solder over Copper Plating RoHS Compliant	90% Sn10%Pb Solder over Nickel Plating (Tin/Lead)

Code	MS	AR	RR	AW	RW
Туре	Microstrip	Axial Ribbon	Radial Ribbon	Axial Wire	Radial Wire
Code	MN	AN	FN	BN	RN
Туре	Non-Mag Microstrip	Non-Mag Axial Ribbon	Non-Mag Radial Ribbon	Non-Mag Axial Wire	Non-Mag Radial Wire

[©] Rated Voltage

Code	Rated Voltage	Code	Rated Voltage
500	50V	152	1500V
101	100V	202	2000V
151	150V	252	2500V
201	200V	302	3000V
301	300V	362	3600V
501	500V	502	5000V
102	1000V	722	7200V

^⑦ Laser Marking

X denotes Marking. Capacitance is less than 10pF; for example: the marking of 1.0pF is 1R0. Capacitance greater than 10pF; for example: the marking of 100pF is 101.

® Packaging Orientation

TV: Tape carrier packaging Vertical Orientation. Vertical orientation means that if the part is lifted from the tape without any rotation and placed on a substrate, its electrodes will be perpendicular to the substrate plane. This impacts the frequency of First Parallel Resonance (suckout).

Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

◆ All Products are in Compliance with RoHS Instruction.

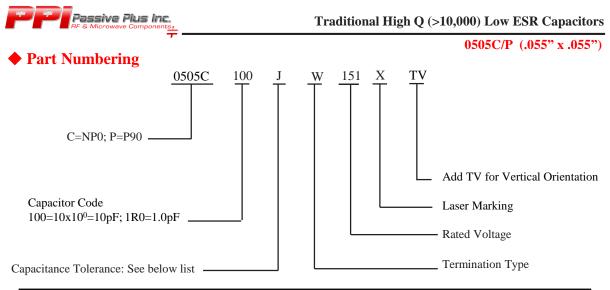
DORG

0505C/P (.055" x .055")

Product Features

High Q, High Power, Low ESR/ESL, Low Noise, High Self-Resonance, Ultra-Stable Performance.

Product Application


Typical Functional Applications: Tuning, Bypass, Coupling, Feedback, D.C. Blocking and Impedance Matching. Typical Circuit Applications: UHF/Microwave RF Power Amplifiers, Mixers, Oscillators, Low Noise Amplifiers, Filter Networks, Timing Circuits and Delay Lines.

• 0505C/P Capacitance Table NP0=C; P90=P Max. capacitance: 0505P=100pF; 0505C=1000pF

Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC
0.1 0.2 0.3 0.4 0.5 0.6 0.7	0R1 0R2 0R3 0R4 0R5 0R6 0R7			2.4 2.7 3.0 3.3 3.6 3.9 4.3	2R4 2R7 3R0 3R3 3R6 3R9 4R3	A,B, C,D		20 22 24 27 30 33 36	200 220 240 270 300 330 360		150V Code 151 or 300V Code	160 180 200 220 240 270 300	161* 181* 201* 221* 241* 271* 301*		150V Code 151 or 200V Code 201
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5	0R8 0R9 1R0 1R1 1R2 1R3 1R4 1R5	A,B, C,D	150V Code 151 or 300V Code 301	 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 	4R7 5R1 5R6 6R2 6R8 7R5 8R2 9R1	B,C, J,K	150V Code 151 or 300V Code 301	 39 43 47 51 56 62 68 75 	 390 430 470 510 560 620 680 750 	F,G, J,K	150V Code	 330 360 390 430 470 510 560 620 	331* 361* 391* 431* 471* 511* 561* 621*	F,G, J,K	150V Code 151
1.6 1.7 1.8 1.9 2.0 2.1 2.2	1R6 1R7 1R8 1R9 2R0 2R1 2R2			10 11 12 13 15 16 18	100 110 120 130 150 160 180	F,G, J,K		 82 91 100 110 120 130 150 	820 910 101 111* 121* 131* 151*		151 or 200V Code 201	680 750 820 910 1000	681* 751* 821* 911* 102*		50V Code 500 or 100V Code 101

Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.

* - Available in NP0 only.

	Capacitance Tolerance										
Code	А	В	С	D	F	G	J	K			
Tolerance	$\pm 0.05 \text{pF}$	$\pm 0.1 \text{pF}$	$\pm 0.25 pF$	$\pm 0.5 \text{pF}$	$\pm 1\%$	$\pm 2\%$	$\pm 5\%$	$\pm 10\%$			

0505C/P Magnetic and Non-Magnetic Dimensions

unit:inch(millimeter)

	T			Capacitor Dime	nsions		Plated Material	
Series	Term. Code	Type/Outlines	Length Lc	Width Wc	Thickness Tc	Overlap B		
0505C 0505P	W	E I					100% Sn Solder over Nickel Plating RoHS Compliant	
0505C 0505P	L	Chip	.055 +.015 to010 (1.40 +0.38 to -0.25)	.055±.010 (1.40±0.25)	.057 (1.45max)	.020 (0.51max)	90%Sn10%Pb Tin/Lead Solder over Nickel Plating	
0505C 0505P	P (Non-Mag)	Chip (Non-Mag)					100% Sn Solder over Copper Plating RoHS Compliant	

Note: "Non-Mag" means no magnetic materials.

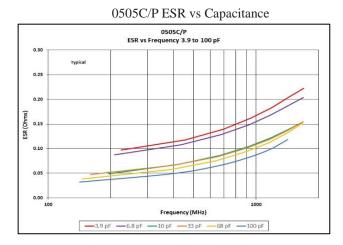
0505C/P (.055" x .055")

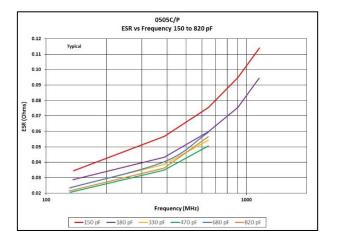
Performance

Item	Specifications					
Quality Factor (Q)	greater than 10,000 at 1MHz.					
Insulation Resistance (IR)	10^5 Megohms min. @ +25 °C at rated WVDC. 10^4 Megohms min. @ +125 °C at rated WVDC.					
Rated Voltage	See Rated Voltage Table.					
Dielectric Withstanding Voltage (DWV)	250% of rated Voltage for 5 seconds.					
Operating Temperature Range	-55°C to +200°C					
Temperature coefficient (TC)	C: 0±30ppm/°C; P: +90±20ppm/°C					
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.					
Piezoelectric Effects	None					
Termination Type	See Termination Type Table.					

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

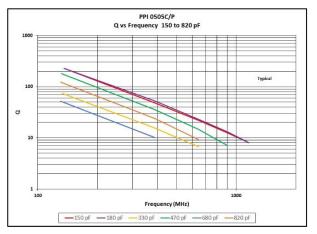
Environmental Tests


Item	Specifications	Method					
Thermal shock	DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 200°C) stay 30 min,the time of removing shall not be more than 3 minutes. Perform the five cycles.					
Moisture resistance	no more than 0.5% or 0.5 pF, whichever is greater.	MIL-STD-202, Method 106.					
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A, With 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.					
Life	IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF, whichever is greater.	MIL-STD-202, Method 108, for 2000 hours, at 200°C. 200% Rated voltage D.C. applies.					
Terminal strength	Force : 10lbs typical, 5 lbs min., Duration time: 5 to 10 seconds.	MIL-STD-202, Method 211A, Test condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.					


0505C/P Performance Curves

Traditional High Q (>10,000) Low ESR Capacitors

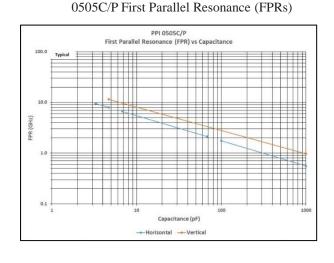
0505C/P (.055" x .055")



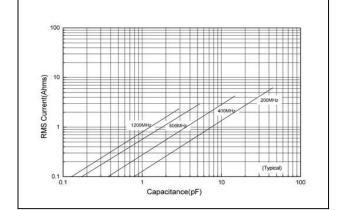
0505C ESR vs Capacitance

DS05C/P Q vs Capacitance

0505C Q vs Capacitance

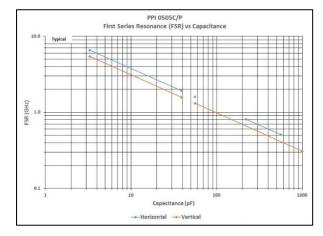


Definitions and Measurement Conditions

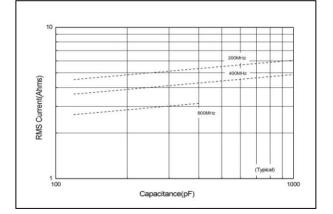

For a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace, with 50-Ohm source and termination resistances, the First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero when reference planes are at the sample edges. The FSR shall be considered as undefined (gap in plot above) if, over the measured or model-validated frequency range: (a) Im[Zin] never reaches zero; or, (b) at frequencies lower than that at which Im[Zin] = 0, Im[Zin] is not monotonic with frequency and/or the real part of the input impedance, Re[Zin], deviates more than once from montonicity. The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequencies lower than those at which Im[Zin] = 0, the FSR shall be considered as undefined. FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions. The measurement conditions are: substrate (mils) = 15; horizontal mount microstrip trace width (mils) = 55. Reference planes at sample edges. All data has been derived from electrical models disposed on several different substrates.

0505C/P (.055" x .055")

0505C/P Current Rating vs Capacitance



The current depends on voltage limited:


$$I = \frac{\sqrt{2}}{2} I_{peak} = \frac{\sqrt{2}}{2} \times \frac{V_{rated}}{X_c} = \sqrt{2} \pi F C V_{rated}$$

The current depends on power dissipation limited: $I = \sqrt{\frac{2 \text{ dissipation}}{ESR}}$

0505C/P First Series Resonance (FSRs)

0505C Current Rating vs Capacitance

Note: If the thermal resistance of mounting surface is 40° C/W. then a power dissipation of 1.5 W will result in the current limited we can calculate the current limited:

$$I = \sqrt{\frac{P_{dissipation}}{ESR}}$$

Definitions and Measurement conditions:

The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in [S21]. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; a vertical orientation means the electrode planes are perpendicular to the substrate.

The measurement conditions are: substrate – Rogers RO4350; substrate dielectric constant = 3.66; horizontal mount substrate thickness (mils) = 25; gap in microstrip trace (mils) = 15; horizontal mount microstrip trace width (mils) = 55. Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

Passive Plus Inc.

0505C/P (.055" x.055")

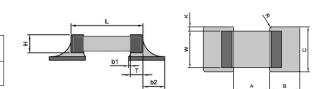
• Design Kits

These capacitors are 100% RoHS. Kits are available in Magnetic and Non-Magnetic that contain 10 (ten) pieces per value; 16 values per kit.

DKD0505C01		0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5pF	$\pm 0.1 \text{pF}$
DKD0505P01	0.1pF- 2.0pF	1.6, 1.8, 2.0pF	$\pm 0.25 \mathrm{pF}$
		1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7pF	$\pm 0.1 \text{pF}$
DKD0505C02 DKD0505P02	1.0pF - 10pF	3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF	$\pm 0.25 \mathrm{pF}$
		10pF	± 5%
DKD0505C03 DKD0505P03	10pF -100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	± 5%
DKD0505C04	100-E 1000-E	100, 120, 150, 180, 200, 220, 240, 270, 300, 30pF,	\pm 5%
	100pF-1000pF	390, 470, 560, 680, 820, 1000pF	\pm 5%
DKD0505C05	0.1pF- 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5pF	$\pm 0.1 \text{pF}$
DKD0505P05	Non-Magnetic	1.6, 1.8, 2.0pF	\pm 0.25pF
		1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7pF	$\pm 0.1 \text{pF}$
DKD0505C06 DKD0505P06	1.0pF - 10pF Non-Magnetic	3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF	\pm 0.25pF
		10pF	\pm 5%
DKD0505C07 DKD0505P07	10pF - 100pF Non-Magnetic	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	\pm 5%
DKD0505C08	100pF- 1000pF	100, 120, 150, 180, 200, 220, 240, 270, 300, 330pF,	\pm 5%
DED0202C08	Non-Magnetic	390, 470, 560, 680, 820, 1000pF	\pm 5%

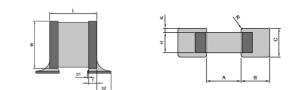
0505C/P (.055" x .055")

♦ Recommended Land Pattern Dimensions


When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

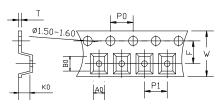
1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

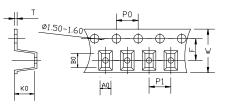
2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.


• Horizontal Mounting

Orientation	EIA	А	В	C
Horizontal	0505	0.5-0.7	0.7-0.9	1.2-1.4

• Vertical Mounting


Orientation	EIA	А	В	С
Vertical	0505	0.5-0.7	0.7-0.9	1.0-1.2


◆ Tape & Reel Specifications

Orientation	EIA	A0	В0	K0	w	P0	P1	Т	F	Qty Min	Qty /reel	Tape material
Horizontal	0505	1.38	1.68	0.98	8.00	4.00	4.00	0.22	3.50	500	3000	Plastic
Vertical	0505	1.10	1.60	1.40	12.00	4.00	4.00	0.30	5.50	300	2000	Plastic

Horizontal Orientation

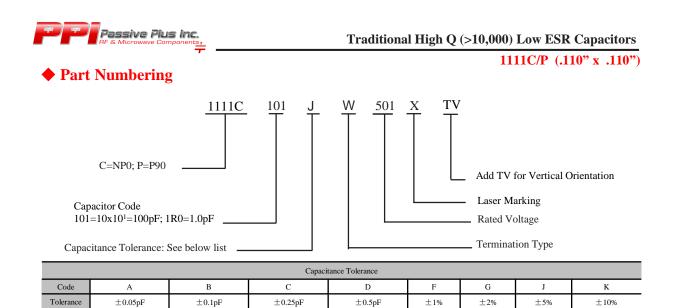
Vertical Orientation

1111C/P (.110" x .110")

IIIIC/P (.110⁻⁻X .11)

Product Features

High Q, High Power, Low ESR/ESL, Low Noise, High Self-Resonance, Ultra-Stable Performance.


Product Application

Typical Functional Applications: Bypass, Coupling, Tuning, Feedback, Impedance Matching and D.C. Blocking. Typical Circuit Applications: UHF/Microwave RF Power Amplifiers, Mixers, Oscillators, Low Noise Amplifiers, Filter Networks, Timing Circuits and Delay Lines.

Cap. pF	Code	Tol.	Rated WVDC												
0.1	OR1			3.6	3R6			43	430			510	511		1001/
0.2	OR2			3.9	3R9			47	470			560	561		100V
0.3	OR3	A,B		4.3	4R3			51	510		500V	620	621		Code 101
0.4	0R4			4.7	4R7			56	560		Code	680	681	F,G,	_
0.5	OR5			5.1	5R1	А,В,		62	620		501 or	750	751	J,K	or 200V
0.6	OR6			5.6	5R6	C,D		68	680		1500V	820	821		Code
0.7	OR7			6.2	6R2			75	750		Code	910	911		201
0.8	OR8			6.8	6R8			82	820		152	1000	102		201
0.9	OR9			7.5	7R5			91	910		152	1100	112*		200V
1.0	1R0		5001	8.2	8R2		5001	100	101			1200	122*		Code
1.1	1R1		500V	9.1	9R1		500V	110	111		300V	1500	152*		201
1.2	1R2		Code 501	10	100		Code 501	120	121		Code	1800	182*		201
1.3	1R3			11	110			130	131	F,G,	301	2200	222*		
1.4	1R4		or 1500V	12	120		or 1500V	150	151	J,K	or	2700	272*		
1.5	1R5	А,В,	Code	13	130		Code	160	161		1000V	3000	302*		100V
1.6	1R6	C,D	152	15	150		152	180	181		Code	3300	332*		Code
1.7	1R7		152	16	160		152	200	201		102	3900	392*	F,G,	101
1.8	1R8			18	180			220	221			4700	472*	J,K	
1.9	1R9			20	200	F,G,		240	241		200V	5100	512*		
2.0	2R0			22	220	J,K		270	271		Code	5600	562*		
2.1	2R1			24	240			300	301		201	10000	103*		
2.2	2R2			27	270			330	331		or				50V
2.4	2R4			30	300			360	361		600V				Code
2.7	2R7			33	330			390	391		Code				500
3.0	3R0			36	360			430	431		601				
3.3	3R3			39	390			470	471						

◆ 1111C/P Capacitance Table NP0=C; P90=P 1111P: 1000pF max., 1111C: 10000pF max.

Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.

1111C/P Lead Type and Dimensions

unit:inch(millimeter)

	Term.	Turne/	C	Capacitor Dimensions				ead Dime	nsions	Distail
Series	Code	Type/ Outlines	Length	Width	Thick.	Overlap	Length	Width	Thickness	Plated
	Code	Outlines	Lc	Wc	Tc	В	LL	WL	TL	Material
1111C	111C W		.110 +.020 to 010	.110 ±.010	.10	.024				100% Sn Solder over Nickel Plating RoHS Compliant
1111P	L	Chip	(2.79 +0.51 to -0.25)	(2.79± 0.25)	(2.54) max	(0.60) Max	-	-	-	90% Sn10% Pb Tin/Lead Solder over Nickel Plating
1111C 1111P	MS	Microstrip	.135 ± .015 (3.43± 0.38)	.110 ±.010 (2.79± 0.25)	.10 (2.54) max	-	.250 (6.35) min	$.093 \pm .005 $ (2.36 ± 0.13)	.004±.001 (0.1±0.025)	100%Silver

			C	nensions		I	ead Dime	nsions	Distad	
Series	Term. Code	Type/ Outlines	Length	Width	Thick.	Overlap	Length	Width	Thickness	Plated Material
	Code	Outlines	Lc	Wc	Тс	В	LL	WL	TL	wrateriai
1111C 1111P	Р	T. I Chip (Non-Mag)	.110 +.020 to 010 (2.79 +0.51to -0.25)	.110 ±.010 (2.79± 0.25)	.10 (2.54) max	.024 (0.60) Max	-	-	-	100% Sn Solder over Copper Plating RoHS Compliant
1111C 1111P	MN	Microstrip (Non-Mag)	.135 ± .015 (3.43± 0.38)	.110 ±.010 (2.79± 0.25)	.10 (2.54) max	-	.250 (6.35) min	$.093 \pm .005 (2.36 \pm 0.13)$.004±.001 (0.1±0.025)	100%Silver

Note: "Non-Mag" means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

Passive Plus Inc.

Traditional High Q (>10,000) Low ESR Capacitors

1111C/P (.110" x .110")

Performance

Item	Specifications					
Quality Factor (Q)	greater than 10,000 at 1MHz.					
Insulation Resistance (IR)	0.1 pF to 470 pF: 10 ⁶ Megohms min. @ +25 °C at rated WVDC. 10 ⁵ Megohms min. @ +125 °C at rated WVDC. 510 pF to 10000 pF: 10 ⁵ Megohms min. @ +25 °C at rated WVDC. 10 ⁴ Megohms min. @ +125 °C at rated WVDC.					
Rated Voltage	See Rated Voltage Table.					
Dielectric Withstanding Voltage (DWV)	250% of Voltage for 5seconds, Rated Voltage≦500VDC 150% of Voltage for 5 seconds, 500VDC< Rated Voltage ≦1250VDC 120% of Voltage for 5 seconds, Rated Voltage>1250VDC					
Operating Temperature Range	-55 °C to +200 °C					
Temperature coefficient (TC)	C: 0±30ppm/°C; P: +90±20ppm/°C					
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.					

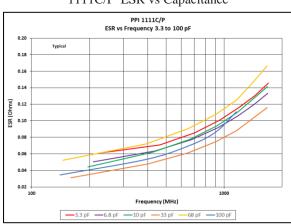
None

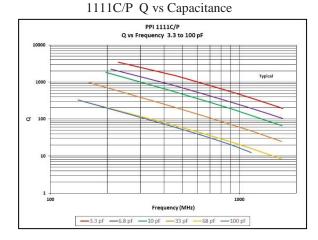
See Termination Type Table.

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

Environmental Tests

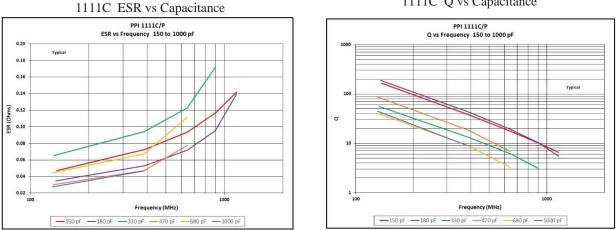
Piezoelectric Effects


Termination Type


Item	Specifications	Method			
Thermal shock	DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 200°C) stay 30 min,the time of removing shall not be more than 3 minutes. Perform the five cycles.			
Moisture resistance	no more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 106.			
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A, With 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.			
Life	IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF, whichever is greater.	MIL-STD-202, Method 108, for2000hours, at 200°C. 200% of Voltage for Capacitors, RatedVoltage≦500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≦1250VDC; 100% of Voltage forCapacitors, RatedVoltage>1250VDC.			
Terminal strength	Force : 10lbs typical, 5 lbs min., Duration time: 5 to 10 seconds.	MIL-STD-202, Method 211A, Test condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.			

Passive Plus Inc. **1111C/P Performance Curves**

Traditional High Q (>10,000) Low ESR Capacitors

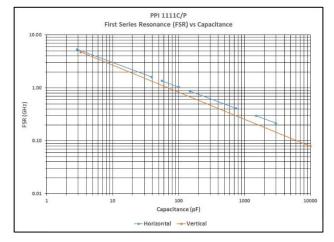

1111C/P (.110" x .110")

1111C/P ESR vs Capacitance

1111C Q vs Capacitance

Definitions and Measurement Conditions

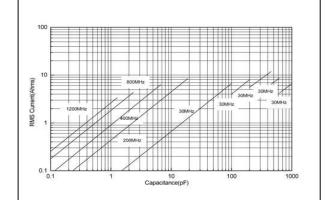
For a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace, with 50-Ohm source and termination resistances, the First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] = 0, the FSR shall be considered as undefined (gap in plot above). The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] = 0, the FSR shall be considered as undefined. FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions. The measurement conditions are: substrate - Rogers RO4350; substrate dielectric constant = 3.66; horizontal mount substrate thickness (mils) = 50; gap in microstrip trace (mils) = 72; horizontal mount microstrip trace width (mils) = 110. Reference planes at sample edges. All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.



1111C/P (.110" x .110")

11111C/P First Parallel Resonance (FPRs)

1111C/P First Series Resonance (FSRs)



1111C Current Rating vs Capacitance

1501

10000

11111C/P Current Rating vs Capacitance

The current depends on voltage limited:

$$I = \frac{\sqrt{2}}{2} I_{peak} = \frac{\sqrt{2}}{2} \times \frac{V_{rated}}{X_c} = \sqrt{2} \pi I^c C V_{rated}$$

Note: If the thermal resistance of mounting surface is 20 °C /W. then a power dissipation of 3 W will result in the current limited we can calculate the current limited. $P_{dustation}^{T}$

Capacitance(pF)

The current depends on power dissipation limited: $I = \sqrt{\frac{P_{dispution}}{ESR}}$

Definitions and Measurement conditions:

The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; a vertical orientation means the electrode planes are perpendicular to the substrate. The measurement conditions are: substrate – Rogers RO4350; substrate dielectric constant = 3.66; horizontal mount substrate thickness (mils) = 50; gap in microstrip trace (mils) = 72; horizontal mount microstrip trace width (mils) = 110. Reference planes at sample edges. All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

100

RMS Current(Ahms)

10

1000

1111C/P (.110" x.110")

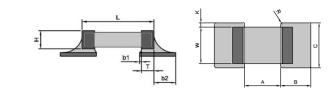
• Design Kits

These capacitors are 100% RoHS. Kits are available in Magnetic and Non-Magnetic that contain 10 (ten) pieces per value.

Design Kit	Description	Values (pF)	No. of values	Toler- ances
		1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7pF		$\pm 0.1 \mathrm{pF}$
DKD1111C01 DKD1111P01	1.0pF - 10pF	3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF	16	±0.25pF
		10pF		± 5%
DKD1111C02 DKD1111P02	10pF -100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	16	\pm 5%
DKD1111C03 DKD1111P03	100pF-1000pF	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820,1000pF	16	± 5%
DKD1111C04 DKD1111P04	1000pF-10000pF	1000, 1100, 1200, 1500, 1800, 2000, 2200, 2700, 3000, 3300, 3900, 4700, 5600, 10000pF	14	± 5%
		1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7pF		$\pm 0.1 \text{pF}$
DKD1111C05 DKD1111P05	1.0pF - 10pF Non-Magnetic	3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF	16	±0.25pF
		10pF		± 5%
DKD1111C06 DKD1111P06	10pF - 100pF Non-Magnetic	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	16	± 5%
DKD1111C07 DKD1111P07	100pF- 1000pF Non-Magnetic	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820,1000pF	16	\pm 5%
DKD1111C08 DKD1111P08	1000pF- 10000pF Non-Magnetic	1000, 1100, 1200, 1500, 1800, 2000, 2200, 2700, 3000, 3300, 3900, 4700, 5600,10000pF	14	± 5%

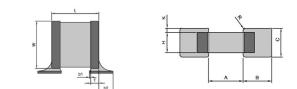
1111C/P (.110" x .110")

Recommended Land Pattern Dimensions


When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

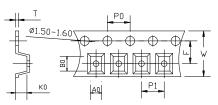
1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

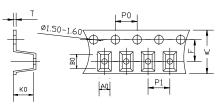
2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.


• Horizontal Mounting

Orientation	EIA	А	В	С
Horizontal	1111	1.9	1.7	2.9

• Vertical Mounting


Orientation	EIA	А	В	С
Vertical	1111	1.9	1.7	2.5


Tape & Reel Specifications

Orientation	EIA	A0	В0	КО	w	P0	P1	Т	F	Qty Min	Qty /reel	Tape material
Horizontal	1111	2.85	3.90	1.95	8.00	4.00	4.00	0.22	3.50	300	2000	Plastic
Vertical	1111	2.00	3.50	2.70	12.00	4.00	4.00	0.40	5.50	300	1500	Plastic
Vertical	1111	2.96	3.60	2.40	8.00	4.00	4.00	0.22	3.50	300	1500	Plastic

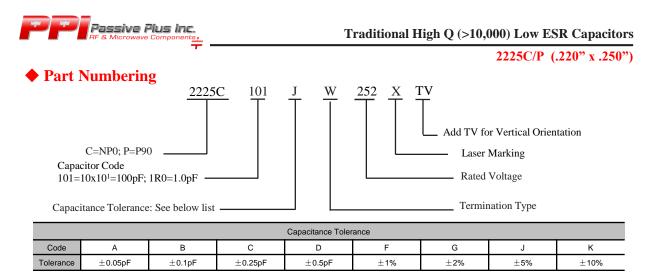
Horizontal Orientation

Vertical Orientation

2225C/P (.220" x .250")

Product Features

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Ultra-Stable Performance.


Product Application

Typical Functional Applications: Bypass, Coupling, Tuning, Impedance Matching and D.C. Blocking. Typical Circuit Applications: UHF/VHF RF Power Amplifiers, Antenna Tuning, Plasma Chambers and Medical Equipment.

◆ 2225C/P Capacitance Table NP0=C; P90=P

Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVD C	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC								
0.5	OR5			3.9	3R9			36	360			330	331		1500V Code								
0.6	OR6			4.3	4R3			39	390			360	361		152								
0.7	0R7			4.7	4R7			43	430		2500V	390	391		or 2000V								
0.8	OR8			5.1	5R1			47	470		Code	430	431		Code								
0.9	OR9			5.6	5R6	B,C,D		51	510		252	470	471		202								
1.0	1R0			6.2	6R2			56	560		or 3600V	510	511										
1.1	1R1			6.8	6R8			62	620		Code	560	561										
1.2	1R2			7.5	7R5			68	680		362	620	621		1000V								
1.3	1R3		2500V	8.2	8R2		2500V	75	750			680	681		Code								
1.4	1R4		Code	9.1	9R1		Code	82	820			750	751		102 or								
1.5	1R5		252	10	100		252	91	910	F,G,		820	821	F,G, 1	1500V								
1.6	1R6	B,C,D	or	11	110			or	100	101	г, G, J,K		910	911	г, G, Ј, К	Code							
1.7	1R7		3600V	12	120			3600V	110	111	3,10		1000	102	3,10	152							
1.8	1R8		Code	13	130										Code	120	121			1100	112		
1.9	1R9		362	15	150											362	130	131		2500V	1200	122	
2.0	2R0			16	160	F,G,		150	151		Code 252	1500	152		5001								
2.1	2R1			18	180	г, G, J,K		160	161		or	1800	182		500V Code								
2.2	2R2			20	200	3,10		180	181		3000V	2200	222		501								
2.4	2R4			22	220			200	201		Code	2700	272		501								
2.7	2R7			24	240			220	221		302			1									
3.0	3R0			27	270			240	241]]													
3.3	3R3			30	300						270	271											
3.6	3R6			33	330			300	301														

Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.

◆ 2225C/P Lead Type and Dimensions

unit: inch (millimeter)

			Ca	pacitor Dim	ensions		Lea	ad Dimen	sions	
Series	Term. Code	Type/ Outlines	Length Lc	Width Wc	Thick- ness Tc	Overlap B	Length LL	Width WL	Thick- ness TL	Plated Material
2225C 2225P	W	Te Te	.230 +.025 to010 (5.84	$\pm.015$.165 (4.19)	.047 (1.20)	_	-	-	100% Sn Solder over Nickel Plating RoHS Compliant
2225P	L	¹ c↓ Chip	+0.64 to -0.25)	(6.35 ± 0.38)	max	max				90% Sn10% Pb Tin/Lead Solder over Nickel Plating
2225C 2225P	MS	T. I. Microstrip					.500	.240 ±.005	$.008 \pm .001 $ (0.2± 0.025)	Silver- plated Copper
2225C 2225P	AR	Axial Ribbon					(12.70) min	(6.1± 0.13)	.004 ±.001(0.1 ±0.025)	100% Silver
2225C 2225P	RR	Tra Radial Ribbon	$.245 \pm .025$ (6.22 \pm 0.64)	$.250 \pm .015$ (6.35 \pm 0.38)	.150 (3.81) max	-	.394 (10.00) min	.118± .005 (3.0± 0.13)	$.012 \\ \pm .001 \\ (0.3 \pm \\ 0.025)$	
2225C 2225P	RW	Radial Wire					.787 (20.00) min	Dia.=.031±.004		Silver- plated Copper
2225C 2225P	AW	Axial Wire					.984 (25.00) min	(0.80 ±	: 0.10)	

Passive Plus Inc. RF & Microweve Components.

2225C/P (.220" x .250")

			Ca	pacitor Di	mensions	5	Lead	Dimensi	ons	
Series	Term. Code	Type/ Outlines	Length Lc	Width Wc	Thick- ness Tc	Overlap B	Length LL	Width WL	Thick -ness TL	Plated Material
2225C 2225P	Р	Te Te Chip (Non-Mag)	.230 +.020 to 010 (5.84 +0.51 to -0.25)	$\begin{array}{c} .250 \\ \pm .015 \\ (6.35 \pm \\ 0.38) \end{array}$.165 (4.19) max	.047 (1.20) max	-	-	-	100%Sn Solder over Copper Plating RoHS Compliant
2225C 2225P	MN	Microstrip (Non-Mag)					.500	.240 ±.005 (6.1±	$.008 \pm .001 $ (0.2 \pm 0.025)	Silver- plated Copper
2225C 2225P	AN	Axial Ribbon (Non-Mag)					min	0.13)	.004 ±.001 (0.1± 0.025)	100% Silver
2225C 2225P	FN	RadialRibbon (Non-Mag)	.245 ±.025 (6.22±	.250 ±.015 (6.35± 0.38)	.150 (3.81)	-	.394 (10.00) min	.118 ±.005 (3.0± 0.13)	$.012 \pm .001 \\ (0.3 \pm 0.025)$	
2225C 2225P	RN	Radial Wire(Non-Mag)	0.64)		max		.787 (20.00) min		31±.004	Silver- plated Copper
2225C 2225P	BN	Axial Wire (Non-Mag)					.984 (25.00) min	(0.80 ± 0.10)		

◆ 2225 C /P Non-Magnetic Lead Type and Dimensions

unit:inch(millimeter)

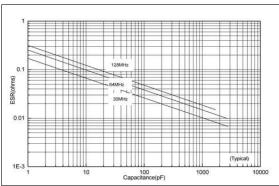
Note: "Non-Mag" means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

Performance

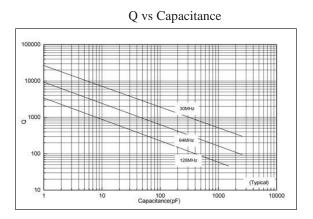
2225C/P (.220" x .250")

Item	Specifications
Quality Factor (Q)	Greater than 10,000 at 1MHz.
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megohms min. @ +25°C at rated WVDC. 10 ⁴ Megohms min. @ +125°C at rated WVDC.
Rated Voltage	See Rated Voltage Table.
Dielectric Withstanding Voltage (DWV)	250% of Voltage for 5seconds, Rated Voltage≦500VDC 150% of Voltage for 5seconds, 500VDC <ratedvoltage≦1250vdc 120% of Voltage for 5 seconds, Rated Voltage>1250VDC</ratedvoltage≦1250vdc
Operating Temperature Range	-55°C to +200°C
Temperature coefficient (TC)	C: 0±30ppm/°C; P: +90±20ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.
Piezoelectric Effects	None
Termination Type	See Termination Type Table.

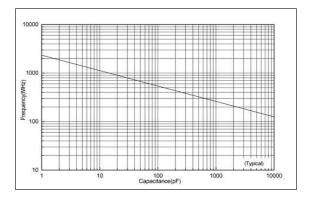
Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

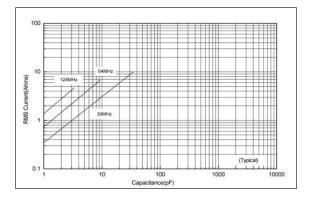

Environmental Tests

Item	Specifications	Method					
Thermal shock	DWV: the initial value IR: Shall not be less than 30% of the initial value. Capacitance change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 125°C) stay 30 min, the time of removing shall not be more than 3 minutes. Perform the five cycles.					
Moisture resistance	no more than 0.5% or 0.5 pF, whichever is greater.	MIL-STD-202, Method 106.					
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A, With 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.					
Life	IR: Shall not be less than 30% of the initial value. Capacitance change: no more than 2.0% or 0.5 pF, whichever is greater.	MIL-STD-202, Method 108, for 2000 hours, at 125 °C, 200% of Voltage for Capacitors, Rated Voltage≦500VDC; 120% of Voltage for Capacitors, 500VDC <ratedvoltage≦1250vdc; 100% of Voltage for Capacitors, Rated Voltage>1250VDC.</ratedvoltage≦1250vdc; 					
Terminal strength	Force : 20lbs typical, 10 lbs min., Duration time: 5 to 10 seconds.	MIL-STD-202, Method 211A, Test condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.					



2225C/P (.220" x .250")


◆ 2225C/P Performance Curves


ESR vs Capacitance

Series Resonance vs Capacitance

Current Rating vs Capacitance

The current depends on voltage limited:

$$I = \frac{\sqrt{2}}{2} I_{peak} = \frac{\sqrt{2}}{2} \times \frac{V_{rated}}{V} = \sqrt{2} \pi I^{2} C V_{rated}$$
$$I = \sqrt{\frac{P_{absupation}}{ESR}}$$

The current depends on power dissipation limited:

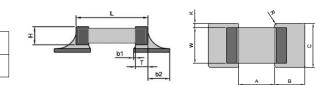
Note: If the thermal resistance of mounting surface is 15 $^\circ\,$ C /W,

then a power dissipation of 4 W will result in the current limited.

We can calculate the current limited.

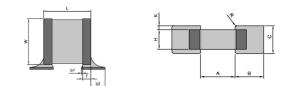
2225C/P (.220" x.250")

Recommended Land Pattern Dimensions


When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

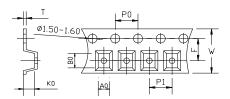
1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.


• Horizontal Mounting

0.1	ET 4		D	G
Orientation	EIA	A	В	C
Horizontal	2225	3.9	2.5	7.0

• Vertical Mounting


Orientation	EIA	А	В	С
Vertical	2225	3.9	2.5	4.0

Tape & Reel Specifications

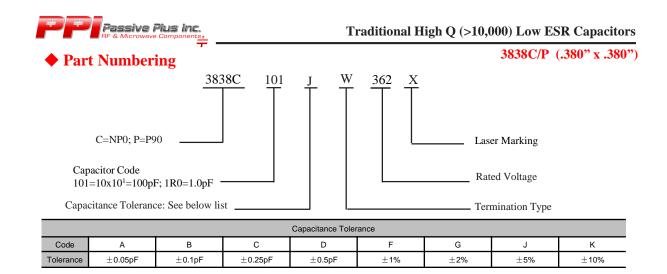
Orientation	EIA	A0	B0	КО	w	P0	P1	Т	F	Qty Min	Qty /reel	Tape material
Horizontal	2225	6.70	6.20	3.40	16.00	4.00	12.00	0.30	7.50	500	500	Plastic

Horizontal Orientation

3838C/P (.380" x .380")

Product Features

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise, Ultra-Stable Performance.


Product Application

Typical Functional Applications: Bypass, Coupling, Tuning, Impedance Matching and D.C. Blocking. Typical Circuit Applications: HF/RF Power Amplifiers, Transmitters, Antenna Tuning, Plasma Chambers, and Medical Equipment.

◆ 3838C/P Capacitance Table NP0= C; P90=P

Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC
0.5	OR5			4.7	4R7			51	510		3600V	560	561		25001
0.6	OR6			5.1	5R1			56	560		Code	620	621		2500V Code
0.7	0R7			5.6	5R6			62	620		362	680	681		252
0.8	OR8			6.2	6R2	B,C,D		68	680		or	750	751		252
0.9	OR9			6.8	6R8			75	750		7200V	820	821		
1.0	1R0			7.5	7R5			82	820		Code	910	911		
1.1	1R1			8.2	8R2			91	910		722	1000	102		
1.2	1R2			9.1	9R1			100	101		3600V	1100	112		1000V
1.3	1R3			10	100			110	111		Code	1200	122		Code
1.4	1R4		3600V	11	110		3600V	120	121		362	1500	152		102
1.5	1R5		Code	12	120		Code	130	131		or	1800	182		
1.6	1R6		362	13	130		362	150	151	F,G,	7200V	2200	222	F,G,	
1.7	1R7	B,C,D	or	15	150		or	160	161	J,K	Code	2400	242	J,K	
1.8	1R8		7200V	16	160		7200V	180	181	3,10	722	2700	272	3,10	
1.9	1R9		Code	18	180		Code	200	201			3000	302		
2.0	2R0		722	20	200		722	220	221			3300	332		5001
2.1	2R1			22	220	F,G, J,K		240	241		2000	3600	362		500V Code
2.2	2R2			24	240	Ј,К		270	271		3600V Code	3900	392		501
2.4	2R4			27	270			300	301		362	4300	432		501
2.7	2R7			30	300			330	331		502	4700	472		
3.0	3R0			33	330			360	361			5100	512		
3.3	3R3			36	360			390	391						
3.6	3R6			39	390			430	431		2500V				
3.9	3R9			43	430			470	471		Code				
4.3	4R3			47	470			510	511		252				

Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.

♦ 3838C/P Lead Type and Dimensions

unit:inch(millimeter)

			Caj	pacitor Di	mensions		Lea	d Dimens	ions	
Series	Term. Code	Type/ Outlines	Length Lc	Width Wc	Thick -ness Tc	Overlap B	Length LL	Width WL	Thick- ness TL	Plated Material
3838C 3838P	W L	T. I. Chip	.380+.015 to 010 (9.65+0.38 to -0.25)	$\pm.010$.170 (4.32) max	.063 (1.60) max	-	-		100%Sn Solder over Nickel Plating RoHS Compliant 90%Sn10%Pb Tin/Lead Solder over Nickel Plating
3838C 3838P	MS	Microstrip					.750 (19.05)	.35 ± .01	$.008 \pm .001 \\ (0.20 \pm 0.025)$	Silver- plated Copper
3838C 3838P	AR	Axial Ribbon		.380			min	(8.89± 0.25)	.004 ±.001 (0.10± 0.025)	100% Silver
3838C 3838P	RR	Radial Ribbon	.380+.015 to 010 (9.65+0.38 to -0.25)		.177 (4.50) max	-	.394 (10.00) Min	.118± .005 (3.0± 0.13)	.012± .001 (0.3± 0.025)	
3838C 3838P	RW	Radial Wire					.787 (20.00) Min	Dia.=.03	$31 \pm .004$	Silver- plated Copper
3838C 3838P	AW	Axial Wire					.984 (25.00) min	0.80	± 0.10	

3838C/P (.380" x .380")

unit: inch (millimeter)

										,
Series	Term.	Type/		apacitor Di	mensions Thick			d Dimens	ions Thick-	Plated
Series	Code	Outlines	Length Lc	Width Wc	-ness Tc	Overlap B	Length LL	Width WL	ness TL	Material
3838C 3838P	Р	TE I Chip (Non-Mag)	.380+.015 to 010 (9.65+0.38 to -0.25)	.380± .010 (9.65± 0.25)	.170 (4.32) max	.063 (1.60) max	-	-	-	100%Sn Solder over Copper Plating Non-Mag, RoHS Compliant
3838C 3838P	MN	T.I. Microstrip (Non-Mag)					.750	.350 ± .010	$.008 \pm .001 \\ (0.20 \pm 0.025)$	Silver- plated Copper
3838C 3838P	AN	Axial Ribbon (Non-Mag)					min	(8.89± 0.25)	.004 ±.001 (0.10± 0.025)	100% Silver
3838C 3838P	FN	Radial Ribbon (Non-Mag)	.380+.015 to 010 (9.65+0.38 to -0.25)	.380± .010 (9.65± 0.25)	.177 (4.50) max	-	.394 (10.00) min	.118 ±.005 (3.0± 0.13)	.012± .001 (0.3± 0.025)	
3838C 3838P	RN	Radial Wire (Non-Mag)					.787 (20.00) min		$31 \pm .004$	Silver- plated Copper
3838C 3838P	BN	Axial Wire (Non-Mag)					.984 (25.00) min	(0.80	± 0.10)	

◆ 3838C/P Non-Magnetic Lead Type and Dimensions

PPP Passive Plus Inc. RF & Microwave Components

Note: "Non-Mag" means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

3838C/P (.380" x .380")

Performance

Item	Specifications
Quality Factor (Q)	Greater than 10,000 at 1MHz.
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megohms min. @ +25°C at rated WVDC. 10 ⁴ Megohms min. @ +125°C at rated WVDC.
Rated Voltage	See Rated Voltage Table.
Dielectric Withstanding Voltage (DWV)	250% of Voltage for 5seconds, Rated Voltage≦500VDC 150% of Voltage for 5seconds, 500VDC <ratedvoltage≦1250vdc 120% of Voltage for 5 seconds, Rated Voltage>1250VDC</ratedvoltage≦1250vdc
Operating Temperature Range	-55°C to +200°C
Temperature coefficient (TC)	C: 0±30ppm/°C; P: +90±20ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.
Piezoelectric Effects	None
Termination Type	See Termination Type Table.

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

Environmental Tests

Item	Specifications	Method
Thermal shock	DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 125°C) stay 30 min, the time of removing shall not be more than 3 minutes. Perform the five cycles.
Moisture resistance	no more than 0.5% or 0.5 pF. whichever is greater.	MIL-STD-202, Method 106.
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF. whichever is greater.	MIL-STD-202, Method 103, Condition A, With 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5pF whichever is greater.	MIL-STD-202, Method 108, for2000hours, at125°C, 200% of Voltage for Capacitors, RatedVoltage≦500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≦ 1250VDC; 100% of Voltage for Capacitors, RatedVoltage>1250VDC.
Terminal strength	Force : 25lbs typical, 10 lbs min., Duration time: 5 to 10 seconds.	MIL-STD-202, Method 211A, Test condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.

Q vs Capacitance

100000

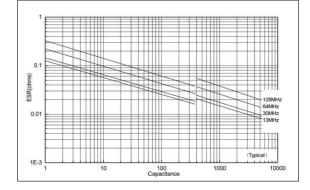
10000

o¹⁰⁰⁰

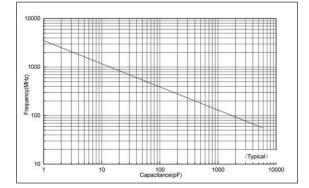
100

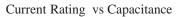
10

3838C/P (.380" x .380")

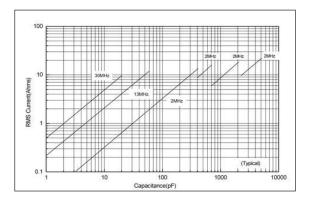

(Typic

10000


1000


◆ 3838C/P Performance Curves

ESR vs Capacitance



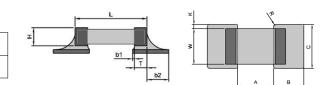
Series Resonance vs Capacitance

100 Capacitance

The current depends on voltage limited: $I = \frac{\sqrt{2}}{2}I_{prost} = \frac{\sqrt{2}}{2} \times \frac{V_{rated}}{X_c} = \sqrt{2}\pi F C V_{rated}$ The current depends on power dissipation limited: $I = \sqrt{\frac{P_{dampators}}{ESR}}$ Note: If the thermal resistance of mounting surface is 12° C/W. then a power dissipation of 5 W will result in the current limited we can calculate the current limited.

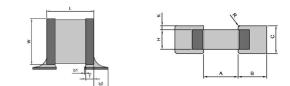
3838C/P (.380" x .380")

♦ Recommended Land Pattern Dimensions


When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

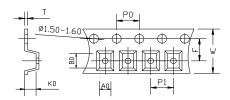
1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.


• Horizontal Mounting

Orientation	EIA	А	В	С
Horizontal	3838	7.1	3.0	10.2

• Vertical Mounting

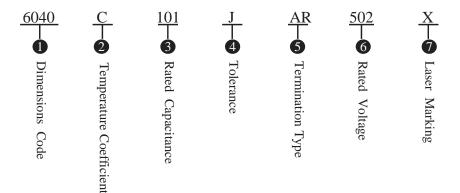

Orientation	EIA	А	В	С
Vertical	3838	7.1	3.0	5.0

♦ Tape & Reel Specifications

Orientation	EIA	A0	B0	K0	w	P0	P1	Т	F	Qty Min	Qty /reel	Tape material
Horizontal	3838	10.10	10.10	3.30	16.00	4.00	16.00	0.30	7.50	50	200	Plastic

Horizontal Orientation

Power Transmitter Capacitors UHF/RF High Q Ceramic Capacitors (NPO TC)



UHF/RF High Q Ceramic Capacitors (NP0 TC)

Product Features

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise.

Part Numbering

① Dimensions Code

unit:inch(millimeter)

	6040C	7676C	1313C		
Longth	.614+.015 ~010	.760+ .015 ~010	1.30 + .015 to 010		
Length	(15.60 + 0.38 ~25)	$(19.30 + 0.38 \sim -0.25)$	$(33.02 + 0.38 \sim \text{to} -0.25)$		
Width	$.433 \pm .01$	$.760 \pm 0.1$	$1.30 \pm .010$		
widui	(11.0 ± 0.25)	(19.30 ± 0.25)	(33.02 ± 0.25)		
Thickness	$.154 \pm .008$	$.154 \pm .008$	$.173 \pm .008$		
1 mexiless	(3.90 ± 0.20)	(3.90 ± 0.20)	(4.40 ± 0.20)		

⁽²⁾ Temperature Coefficient: 0 ± 30 ppm/°C

③ Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes point.

Capacitance greater than 10pF; for example: 101=100pF. The third number is the power of 10.

④ Tolerance

Code	В	С	D	F	G	J	K
Tolerance	$\pm 0.1 \text{pF}$	±0.25pF	$\pm 0.5 \mathrm{pF}$	±1%	±2%	±5%	±10%

^⑤ Termination Type

Code	W]	Р		L	
Туре	100% Sn Soler o Nickel Plating	 100% Sn Solder over Copper Plating RoHS Complian		90%Sn10%Pb Solder over Nickel Plating (Tin/Lead)		
Code	MS	AR	AW		RW	
Туре	Microstrip	Axial Ribbon	Axial Wire		Radial Wire	
Code	MN	AN	BN		RN	
Туре	Non-Mag Microstrip	lon-Mag ial Ribbon	Non-Mag Axial Wire		Non-Mag Radial Wire	

[©] Rated Voltage

Code	Rated Voltage	Code	Rated Voltage
301	300V	252	2500V
501	500V	302	3000V
102	1000V	362	3600V
152	1500V	502	5000V
202	2000V	802	8000V

^⑦ Laser Marking

X denotes Marking.

Capacitance is less than 10pF; for example: The marking of 1.0pF is 1R0.

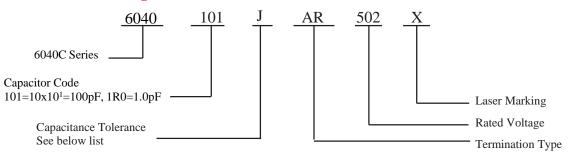
Capacitance greater than 10pF; for example: The marking of 100pF is 101.

♦ Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

6040C (.600" x .400")

6040C (.600" x .400")


Product Features

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise, Ultra-Stable Performance.

• 6040C Capacitance Table

Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC
$ \begin{array}{c} 1.0\\ 1.2\\ 1.5\\ 1.8\\ 2.2\\ 2.7\\ 3.3\\ 3.9\\ 4.7\\ 5.6\\ 6.8\\ 8.2 \end{array} $	1R0 1R2 1R5 1R8 2R2 2R7 3R3 3R9 4R7 5R6 6R8 8R2	B,C,D	5000V Code 502 Extended Voltage 8000V Code 802	33 39 47 56 68 82 100 120 150 180 220 270	330 390 470 560 680 820 101 121 151 181 221 271	F,G, J,K	5000V Code 502 Extended Voltage 8000V Code 802 3000V Code 302 Extended	820 1000 1200 1500 1800 2200 2700 3300 4700 5100 5600 6800	821 102 122 152 182 222 272 332 472 512 562 682	F,G, J,K	2000V Code 202 Extended Voltage 3000V Code 302 1000V Code 102 Extended Voltage 2000V Code 202
10 12 15 18 22 27	100 120 150 180 220 270	F,G, J,K		330 390 470 560 680	331 391 471 561 681		Voltage 5000V Code 502				

Part Numbering

	Capacitance Tolerance										
Code	В	B C D F G J									
Tolerance	$\pm 0.1 \text{pF}$ $\pm 0.25 \text{pF}$ $\pm 0.5 \text{pF}$ $\pm 1\%$ $\pm 2\%$ $\pm 5\%$ $\pm 10\%$										

Power Transmitter Capacitors UHF/RF High Q Ceramic Capacitors (NP0 TC)

♦ 6040C Lead Type and Dimensions

6040C (.600" x .400")

• 604	40C L	ead Type and Dimen	sions				-	ur	nit: inch(m	illimeter)
			(Capacitor D	imension	S	Lea	ad Dimensi	ons	
Series	Term. Code	Type/ Outlines	Length Lc	Width Wc	Thick -ness Tc	Overlap B	Length LL	Width WL	Thick- ness TL	Plated Material
6040C	W	*				.063 (1.60)				100%Sn Solder over Nickel Plating RoHS Compliant
0040C	L	Chip				(1.00) max	-	-	-	90%Sn10%Pb Tin/Lead Solder over Nickel Plating
6040C	MS	Tr. Microstrip	.614 +.015	.433			.787 (20.00)	.35 ± .01	.008 ± .001	
6040C	AR	Axial Ribbon	to 010 (15.6 +0.38	$\pm .010$ (11.0 \pm 0.25)	$.154 \pm$.008 (3.90 \pm 0.20)		min	(8.89± 0.25)	(0.20 ± 0.025)	Silver- plated
6040C	RW	Radial Wire	to -0.25)			-	.787 (20.00) min	Dia.=.03	±.004	Copper
6040C	AW	Axial Wire					.984 (25.00) min	(0.80	0 ± 0.10)	

			(Capacitor D	imension	s	Lea	ad Dimensi	ons	
Series	Term. Code	Type/ Outlines	Length Lc	Width Wc	Thick -ness Tc	Overlap B	Length LL	Width WL	Thick- ness TL	Plated Material
6040C	Р	Chip (Non-Mag)				.063 (1.60) max	-	-	-	100% Sn Solder over Copper Plating Non-Mag
6040C	MN	Microstrip (Non-Mag)	.614 +.015	.433			.787 (20.00)	.35 ± .01 (8.89±	.008 ± .001	
6040C	AN	Axial Ribbon (Non-Mag)	to 010 (15.6 +0.38	$\pm .010$ (11.0 \pm 0.25)	$.154 \pm$.008 (3.90 \pm 0.20)		min	0.25)	(0.20± 0.025)	Silver- plated
6040C	RN	Radial Wire (Non-Mag)	to -0.25)			-	.787 (20.00) min	Dia.=.03	±.004	Copper
6040C	BN	Axial Wire (Non-Mag)					.984 (25.00) min	(0.80	0 ± 0.10)	

Note: "Non-Mag" means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

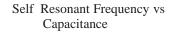
Power Transmitter Capacitors UHF/RF High Q Ceramic Capacitors (NP0 TC)

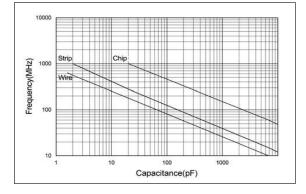
Performance

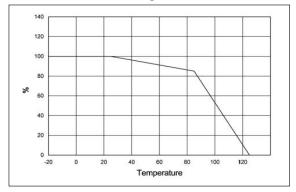
6040C (.600" x .400")

Item	Specifications
Quality Factor (Q)	No less than 1000pF, Q value more than 2000, Test frequency 1MHz; More than 1000pF, Q value more than 2000, Test frequency 1KHz;
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megohms min. @ +25°C at rated WVDC. 10 ⁴ Megohms min. @ +125°C at rated WVDC.
Rated Voltage	See Rated Voltage Table.
Dielectric Withstanding Voltage (DWV)	250% of Voltage for 5 seconds, Rated Voltage ≦500VDC 150% of Voltage for 5 seconds, 500VDC< Rated Voltage ≦1250VDC 120% of Voltage for 5 seconds, Rated Voltage >1250VDC
Operating Temperature Range	-55°C to +175°C
Temperature coefficient (TC)	0±30ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.
Piezoelectric Effects	None
Termination Type	See Termination Type Table.

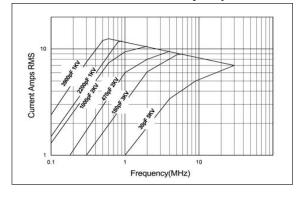
Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

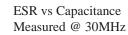

Environmental Tests

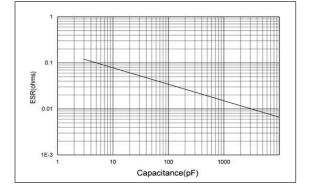

Item	Specifications	Method					
Thermal shock	DWV: the initial value IR: Shall not be less than 30% of the initial value Capacitance change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 125°C) stay 30 min, the time of removing shall not be more than 3 minutes. Perform the five cycles.					
Moisture resistance	no more than 0.5% or 0.5 pF, whichever is greater.	MIL-STD-202, Method 106.					
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3 pF, whichever is greater.	MIL-STD-202, Method 103, Condition A, With 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.					
Life	IR: Shall not be less than 30% of the initial value Capacitance change: no more than 2.0% or 0.5 pF, whichever is greater.	MIL-STD-202, Method 108, for 2000 hours, at 125°C, 200% of Voltage for Capacitors, Rated Voltage ≦500VDC; 120% of Voltage for Capacitors, 500VDC < Rated Voltage ≦ 1250VDC; 100% of Voltage for Capacitors, Rated Voltage >1250VDC.					
Terminal strength	Force : 25lbs typical, 20 lbs min., Duration time: 5 to 10 seconds.	MIL-STD-202, Method 211A, Test condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.					

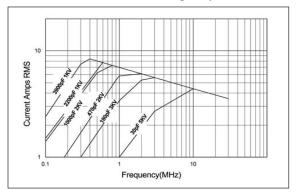

6040C (.600" x .400")

♦ 6040C Performance Curves






% Maximum Current vs Ambient Temperature


6040C Strip Terminals Rated Current vs Frequency

6040C Wire Terminals Rated Current vs Frequency

6040C (.600" x .400")

Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

Horizontal Mounting

		unung	,			-
Orientation	EIA	A	В	C		υ
Horizontal	6040	13.00	3.30	11.30		ļ
					AB	

Product Features

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise, Ultra-Stable Performance.

7676C Capacitance Table

	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC
	1.0	1R0			33	330			1000	102		
	1.2	1R2			39	390			1200	122		
	1.5	1R5			47	470			1500	152		3000V Code 302;
	1.8	1R8			56	560			1800	182		
	2.2	2R2	B,C,D		68	680		5000V Code 502;	2200	222		Extended
	2.7	2R7	в,с,р		82	820		Extended	2700	272		5000V Code 502
	3.3	3R3			100	101		8000V Code 802	3300	332		Code 302
	3.9	3R9		5000V Code 502;	120	121		Code 802	4700	472		
	4.7	4R7		Extended	150	151	F,G,		5100	512	G,	
	5.6	5R6		8000V	180	181	J,K		5600	562	J,K	
	6.8	6R8		Code 802	220	221			6800	682		1000V Code 102;
	8.2	8R2			270	271			7500	752		Extended
	10	100			300	301			8200	822		3000V Code 302
	12	120			390	391		3000V Code 302;	10000	103		Code 302
	15	150	F,G,		470	471		Extended	12000	123		1000V
	18	180	J,K		560	561		5000V Code 502	15000	153		Code 102;
	22	220			680	681		Code 502	18000	183		2000V
	27	270			820	821			20000	203		Code202
	Part		bering 767	<u>6C 1</u>	01	J	AR	802	X	Ţ	М	
	С	=100, 1]	R0=1.0pF nce Tolera w list]					R	aser Mar ated Vol erminatio	tage
					Cap	acitance '	Folerance	9				
_	Cod		B	C		D	F		3	J		K
	Tolera	ince	± 0.1	pF ±0.2	5pF	$\pm 0.5 \text{pF}$	±1	1% ±	2%	$\pm 5\%$	±	10%

Passive Plus Inc. RF & Microwave Components

Power Transmitter Capacitors UHF/RF High Q Ceramic Capacitors (NP0 TC)

◆ 7676C Lead Type and Dimensions

7676C (.760" x .760") unit: inch (millimeter)

				Capacitor I	Dimensions		Lea	d Dimensio	ons	
Series	Term. Code	Type/ Outlines	Length Lc	Width Wc	Thick -ness Tc	Overlap B	Length LL	Width WL	Thick- ness TL	Plated Material
7676C	W L	Chip				.063 (1.60) max	-	-	-	100%Sn Solder over Nickel Plating RoHS Compliant 90%Sn10%Pb Tin/Lead Solder over Nickel Plating
7676C	MS	Microstrip	.760 +.015 to 010 (19.3 +0.38 to -0.25)		±.010 .154 +		.787 (20.00)	.591 ± .010	.008 ±.001	
7676C	AR	Axial Ribbon		(19.3±			min	(15.0± 0.25)	(0.20± 0.025)	Silver- plated
7676C	RW	Radial Wire					.787 (20.00) min	Dia .03±	.004	Copper
7676C	AW	Axial Wire					1.181 (30.00) min	0.80 ± 0.10		
	T	T (Capacitor I	Dimensions		Lead	d Dimensio	ons	
Series	Series Term. Code			-						D1 . 1
	Code	Type/ Outlines	Length Lc	Width Wc	Thick -ness Tc	Overlap B	Length LL	Width WL	Thick- ness TL	Plated Material
7676C	Code P			Width	Thick -ness	-			Thick- ness	
7676C 7676C		Outlines		Width	Thick -ness	.063 (1.60)	LL - .787	WL - .591 ± .010	Thick- ness TL - .008 ±.00 1	Material 100% Sn Solder over Copper
_	P	Outlines	.760 +.015	Width Wc .760	Thick -ness Tc	.063 (1.60)	LL. -	WL -	Thick- ness TL -	Material 100% Sn Solder over Copper Plating Silver- plated
7676C	P	Outlines	.760 +.015 to 010 (19.3 +0.38	Width Wc .760 ±.010 (19.3±	Thick -ness Tc .154 ± .008 (3.90	.063 (1.60)	LL - .787 (20.00)	WL - .591 ± .010 (15.0±	Thick- ness TL - .008 ±.00 1 (0.20 ± 0.025)	Material 100% Sn Solder over Copper Plating Silver-

Note: "Non-Mag" means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

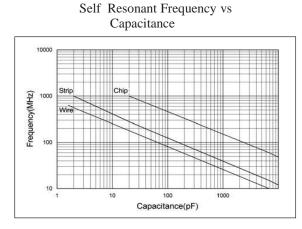
7676C (.760" x .760")

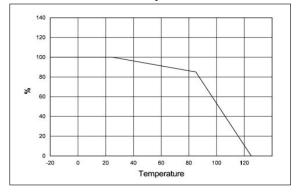
Performance

Item	Specifications
Quality Factor (Q)	No less than 1000pF, Q value more than 2000, Test frequency 1MHz; More than 1000pF, Q value more than 2000, Test frequency 1KHz;
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megohms min. @ +25°C at rated WVDC. 10 ⁴ Megohms min. @ +125°C at rated WVDC.
Rated Voltage	See Rated Voltage Table.
Dielectric Withstanding Voltage (DWV)	250% of Voltage for 5 seconds, Rated Voltage ≦500VDC 150% of Voltage for 5 seconds, 500VDC < Rated Voltage ≦1250VDC 120% of Voltage for 5 seconds, Rated Voltage >1250VDC
Operating Temperature Range	-55°C to +175°C
Temperature coefficient (TC)	0±30ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.
Piezoelectric Effects	None

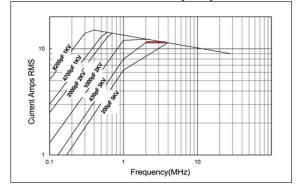
Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

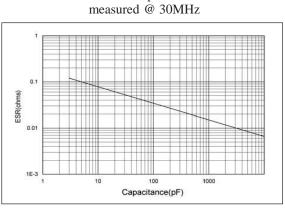
♦ Environmental Tests


Item	Specifications	Method
Thermal shock	DWV: the initial value IR: Shall not be less than 30% of the initial value. Capacitance change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 125°C) stay 30 min, the time of removing shall not be more than 3 minutes. Perform the five cycles.
Moisture resistance	no more than 0.5% or 0.5 pF, whichever is greater.	MIL-STD-202, Method 106.
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A, With 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value. Capacitance change: no more than 2.0% or 0.5 pF, whichever is greater.	MIL-STD-202, Method 108, for 2000 hours, at 125° C, 200% of Voltage for Capacitors, Rated Voltage ≤ 500 VDC; 120% of Voltage for Capacitors, 500 VDC < Rated Voltage ≤ 1250 VDC; 100% of Voltage for Capacitors, Rated Voltage >1250VDC.
Terminal strength	Force : 30lbs typical, Duration time: 5 to 10 seconds.	MIL-STD-202, Method 211A, Test condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.

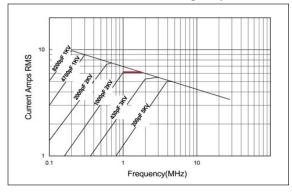

ESR vs Capacitance

7676C (.760" x .760")


7676C Performance Curves



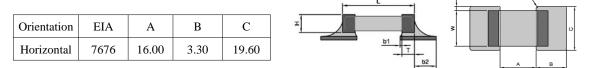
% Maximum Current vs Ambient Temperature


7676C Strip Terminals Rated Current vs Frequency

7676C Wire Terminals

Rated Current vs Frequency

7676C (.760" x .760")


♦ Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

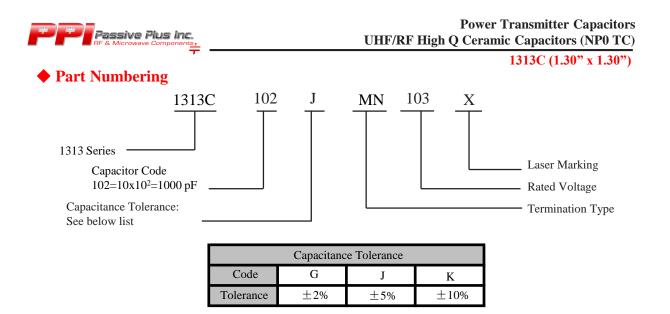
2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

• Horizontal Mounting

1313C (1.30" x 1.30")

Product Features

High Q, High RF Current/Voltage, High RF Power, Low ESR/ESL, Low Noise, Non-Magnetic Ultra-Stable Performance.


Typical Application Fields

Semiconductor manufacturing, Inductive Heating, Inductively Coupled Plasma systems, Scientific Instruments, Medical, High Energy RF Power Transfer, Matching Circuits.

• 1313C Capacitance Table

Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC
200	201			1800	182			12000	123		
220	221			2200	222	G,J,K	J,K 10KV Code103	15000	153		
270	271			2700	272		Code105	22000	223	J,K	3000V
300	301			3300	332			33000	333		Code302
330	331			4700	472			47000	473		
390	391			5100	512			56000	563		
470	471	G,J,K	10KV Code103	5600	562	C L V	5000V	68000	683		1000V
560	561		Code105	6800	682	G,J,K	Code502	82000	823		
680	681			7500	752			100000	104	J,K	Code102
820	821			8200	822			120000	124		
1000	102			10000	103						
1200	122										
1500	152										

♦ 1313C Non-Magnetic Lead Type and Dimensions

◆ 1313C Non-Magnetic Lead Type and Dimensions										
			Capacitor Dimensions					Lead Dimensions		
Series	s Term. Type/ Code Outlines		Length Lc	Width Wc	Thick -ness Tc	Overlap B	Length LL	Width WL	Thickness TL	Plated Material
1313C	MN	TLTe Microstrip (Non-Mag)				-	.787± 0.02 (20.00±	1.299 ± .020 (33.0±	.012 ± .001 (0.30±	
1313C	WC Lo	1.30 +.015				0.5)	0.5)	0.025)	Silver- plated Copper	
		Axial Ribbon (NonMag)	to 010	$1.30 \pm .010$.173 ±.008		.669±	0.157	.012	
1313C	FN	TL We want	(33.02 +0.38 to -0.25)	(33.02± 0.25)	(4.40 ±0.20)		0.012 (17.00 ± 0.3)	$\pm .008$ (4.0± 0.2)	$\pm .001$ (0.30± 0.025)	
		Radial Ribbon (Non-Mag)								
1313C	Р	Chip (Non-Mag)				.063 (1.60) max	-	-	-	Non-Mag, Copper Plated 100% Sn

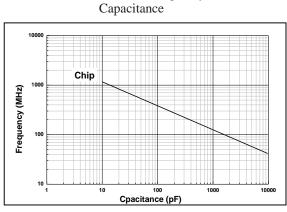
Note: "Non-Mag" means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

1313C (1.30" x 1.30")

Performance

Item	Specifications
Quality Factor (Q)	Less than 1000pF, Q value more than 2000, Test frequency 1MHz; Greater than 1000pF, Q value more than 2000, Test frequency 1KHz;
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megohms min. @ +25°C at rated WVDC. 10 ⁴ Megohms min. @ +125°C at rated WVDC.
Rated Voltage	See Rated Voltage Table.
Dielectric Withstanding Voltage (DWV)	150% of Voltage for 5 seconds, 500VDC < Rated Voltage ≦1250VDC 120% of Voltage for 5 seconds, Rated Voltage >1250VDC
Operating Temperature Range	-55°C to +175°C
Temperature coefficient (TC)	0±30ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.
Piezoelectric Effects	None

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.


• Environmental Tests

Item	Specifications	Method
Thermal shock	DWV: the initial value IR: Shall not be less than 30% of the initial value. Capacitance change: no more than 0.5% or 0.5 pF, whichever is greater.	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 125°C) stay 30 min, the time of removing shall not be more than 3 minutes. Perform the five cycles.
Moisture resistance		MIL-STD-202, Method 106.
Humidity (steady state)	DWV: the initial value IR: the initial value Capacitance change: no more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A, With 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value. Capacitance change: no more than 2.0% or 0.5 pF, whichever is greater.	MIL-STD-202, Method 108, for 2000 hours, at 125°C, 120% of Voltage for Capacitors, 500VDC < Rated Voltage ≤ 1250VDC; 100% of Voltage for Capacitors, Rated Voltage >1250VDC.
Terminal strength	Force : 30lbs typical, Duration time: 5 to 10 seconds.	MIL-STD-202, Method 211A, Test condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.

1313C (1.30" x 1.30")

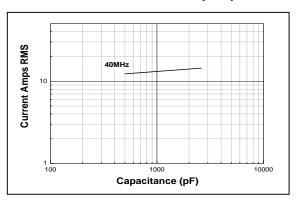
1313C Performance Curves

Self Resonant Frequency vs

Test Conditions:

Typical responses for sample placed across a 1.1-inch gap in a 114-milwide Micro-strip on 60 mil FR4 PCB.

Measurements de-embedded to sample edges using TRL calibration procedures.

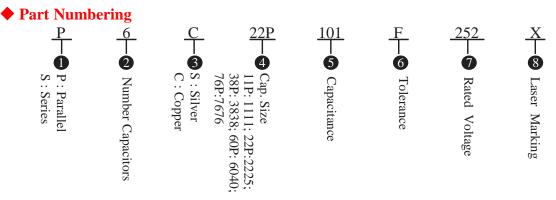


ESR vs Capacitance measured @ 30MHz

1313C Rated Current vs Frequency

Please contact Passive Plus, Inc. to begin discussions for a Custom Assembly.

Capacitor Assemblies Offering


Product Features

High Operating Voltage, High Operating Current, Extended Capacitance, Tighter Tolerances,

High Reliability, High Q, Ultra-low ESR, Non-Magnetic.

• Typical Applications Field

High Power RF, Medical Electronics, Broadcast, Semiconductor Manufacturing, High Magnetic Environments, Inductive Heating.

Capacitance: For capacitor values requiring 3 significant digits,

e.g. 1222.5pF =1222R5

e.g. P6S22P101F252X

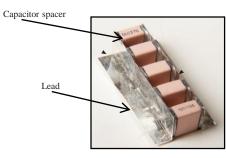
Silver bracket assembly with six 2225C pieces in parallel, Capacitance is 100pF, Capacitance tolerance is $\pm 1\%$, WVDC is 2500 V and Laser marking.

e.g. S2S76P1222R5G203X

Silver bracket assembly with two 2225C pieces in series, Capacitance is 1222.5pF, Capacitance tolerance is $\pm 2\%$, WVDC is 20,000V and Laser marking.

Capacitance and Voltage

By Buyer's requirements using existing drawings, mechanical sketches, or we can help with capable modeling of assemblies thermal rise predictions.



Typical Assembly Configurations

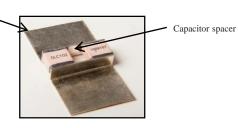
① Parallel Assemblies

unit:inch(millimeter)

	1111P/C	2225P/C	3838P/C	6040C	7676C	1313C			
Lead Material			Silver-plated Copper or silver						
Lead Thickness	.004 or .010	(0.1 or 0.25)	27 28	.010 or .020 (0.25 or 0.51)					
Lead Length (max.)	.50 (12.7)	.75 (19.8)		2.0 (50.8)				
Capacitor Spacer (typ.)	.050 or .07	8 (1.3 or 2)	.090 (2.3) .050 or .157 (1.3 or 4)						
Mtg Configuration		Horizontal/Vertical							

3838 Series/Parallel Combination

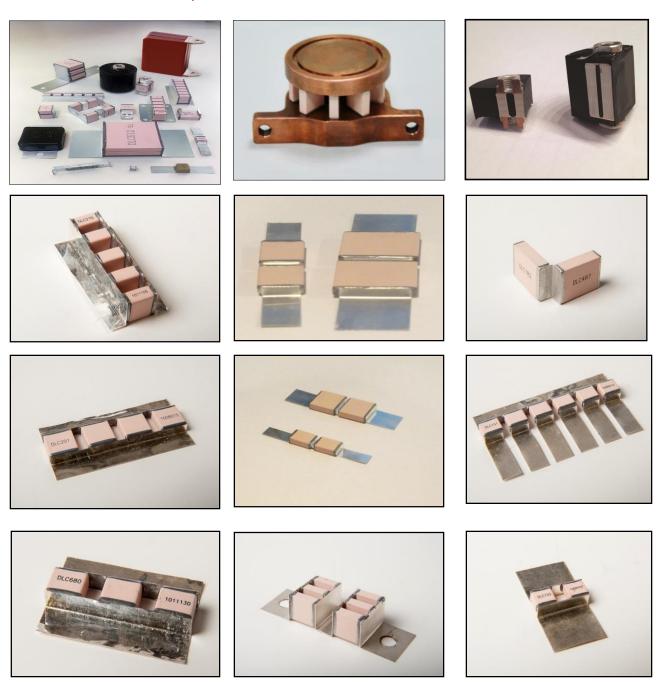
^② Series Assemblies


unit:inch(millimeter)

	2225P/C	3838P/C	6040C	7676C	1313C			
Lead Type			L Bracket					
Lead Material		Silver-plated Copper or silver						
Lead Thickness	.010	(0.25)	.010 or .020 (0.25 or 0.51)					
Lead Length (max.)	.75 (19.8)		1.0 (25.4)					
Capacitor Spacer (typ.)	.050 to .157 (1.3 to 4)							
Mtg Configuration	Horizontal							

Lead .

• Epoxy Molding Available



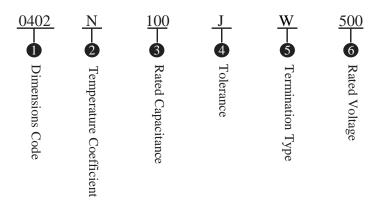
③ Other Assemblies

By Buyer's requirement

Custom Capacitor Assemblies

Please contact PPI (<u>sales@passiveplus.com</u>) to discuss custom assembly options.

NOTES


Product Features

Lowest ESR, Highest working voltage, High self resonance frequencies (to 25GHz).

Product Application

Base station Products, L/C Filter.

Part Numbering

① Dimensions Code

unit: inch(millimeter)

	0201N	0402N	0603N	0805N	1111N
Length	$.024 \pm .001$	$.040 \pm .004$	$.06 \pm .006$	$.08 \pm .010$	0.110+.020~.010
Lengui	(0.60 ± 0.03)	(1.02 ± 0.1)	(1.52 ± 0.15)	(2.0 + 0.25 ~ -0.25)	(2.79+0.51 ~ -0.25)
Width	$.012 \pm .001$	$.020 \pm .004$	$.030 \pm .006$	$.05 \pm .010$.110±.010
width	(0.30 ± 0.03)	(0.51 ± 0.1)	(0.76 ± 0.15)	(1.2 ± 0.25)	(2.79 ± 0.25)
Thickness	$.012 \pm .001$	$.020 \pm .004$.03+.005 ~003	.057 (1.45) max	10(2.6) may
Thickness	(0.30 ± 0.03)	(0.51 ± 0.1)	(0.76+0.13 ~ -0.08)	.037 (1.43) Illax	.10 (2.6) max

⁽²⁾ Temperature Coefficient: 0 ± 30 ppm/°C

③ Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes point.

Capacitance greater than 10pF; for example: 101=100pF, The third number is the power of 10.

④ Tolerance

Code	А	В	С	D	F	G	J	K
Tolerance	$\pm 0.05 pF$	$\pm 0.1 \text{pF}$	$\pm 0.25 pF$	$\pm 0.5 \text{pF}$	±1%	$\pm 2\%$	$\pm 5\%$	±10%

⑤ Termination Type

Code	W
Туре	100% Nickel Plated (Sn) RoHS

[©] Rated Voltage

Code	Rated Voltage
250	25V
500	50V
251	250V
501	500V

⑦ Laser Marking

Offered on 0603N, 0805N and 1111N case sizes.

♦ Performance Requirements

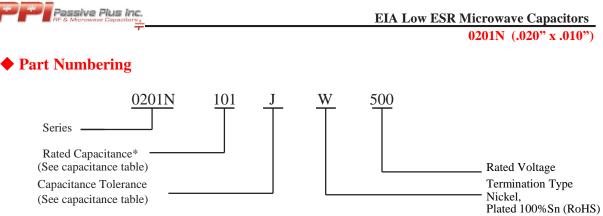
Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

♦ All products are in compliance with RoHS instruction.

Passive Plus Inc.

EIA Low ESR Microwave Capacitors

0201N (.020" x .010")



• 0201N Capacitance & Rated Voltage Table

Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC
0.1	0R1			2.2	2R2			16	160		
0.2	0R2			2.4	2R4			18	180		
0.3	0R3			2.7	2R7		20	200			
0.4	0R4			3.0	3R0			22	220		
0.5	0R5			3.3	3R3	A,B, C,D		24	240		
0.6	0R6			3.6	3R6	С,D		27	270		
0.7	0R7			3.9	3R9			30	300		25V Code 250 Or 50V Code 500
0.8	0R8		25V	4.3	4R3	В,	25V Code 250 C,D 50V Code 500	33	330	F,G, J,K	
0.9	0R9		Code	4.7	4R7			36	360		
1.0	1R0	A D	250	5.1	5R1			39	390		
1.1	1R1	A,B, C,D	Or	5.6	5R6	C,D		43	430		
1.2	1R2	C,D	50V	6.2	6R2			47	470		
1.3	1R3		Code 500	6.8	6R8			51	510		
1.4	1R4			7.5	7R5	B,C		56	560		
1.5	1R5			8.2	8R2			62	620		
1.6	1R6			9.1	9R1			68	680		
1.7	1R7			10	100			75	750		
1.8	1R8			11	110	БС		82	820		
1.9	1R9			12	120	F,G, J,K		91	910		
2.0	2R0			13	130	J,K		100	101		
2.1	2R1			15	150						

Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.

Note: All products are in compliance with RoHS instruction.

*When capacitance is less than 1.0, use "R" for decimal

Capacitance Tolerance								
Code	Code A B C D F G J K							
Tol.	±0.05pF	$\pm 0.1 \text{pF}$	±0.25pF	$\pm 0.5 pF$	$\pm 1\%$	±2%	±5%	±10%

• 0201N Chip Dimensions

unit:inch(millimeter)

	Toma				Plated		
Series Term. Typ Code Typ	Type/Outlines	Length Lc	Width Wc	Thickness Tc	Overlap B	Material	
0201N	W	Free We	.024±.001 (0.60±0.03)	.012±.001 (0.30±0.03)	.012±.001 (0.30±0.03)	.008 Max (0.20 Max)	Sn/Ni (RoHS)

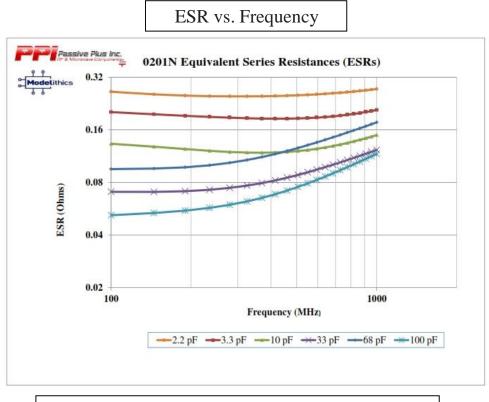
Design Kits

These capacitors are 100% RoHS. Kits are available in Magnetic termination that contain 10 (ten) pieces per value; number of values per kit varies, depending on case size and capacitance.

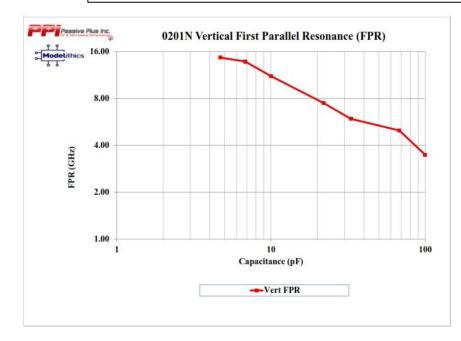
Kit	Description	Values	Tolerance
DKD0201N01	0201N .1pF - 2.0pF	0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0, 1.3, 1.5, 1.7, 1.9, 2.0pF	+/1pF
DKD0201N02	0201N 1.0pF - 10pF	1.0, 1.3, 1.5, 1.7, 1.9, 2.0, 2.2, 2.7, 3.0, 3.9, 4.7, 5.6, 6.8, 7.5, 8.2pF,	+/.1pF
DIEDOZOTINOZ	0201111.001 - 1001	10pF	+/-5%
DKD0201N03	0201N 10 - 100pF	10, 13, 15, 18, 20, 22, 27, 30, 39, 47, 56, 68, 75, 82, 91, 100pF	+/-5%

Performance

Item	Specifications
Quality Factor (Q)	2,000 min.
Insulation Resistance (IR)	 10⁵ Megohms min. @ +25 °C at rated WVDC. 10⁴ Megohms min. @ +125 °C at rated WVDC.
Rated Voltage	25V or 50V
Dielectric Withstanding Voltage (DWV)	250% of rated Voltage for 5 seconds.
Operating Temperature Range	-55°C to +175°C
Temperature coefficient (TC)	0±30ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.
Piezoelectric Effects	None


• Environmental Tests

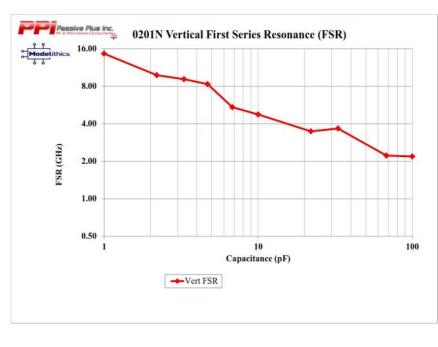
Item	Specifications	Method
Terminal Adhesion	Termination should not pull off. Ceramic should remain undamaged.	Linear pull force exerted on axial leads soldered to each terminal. 2.0lbs.
Resistance to soldering heat	No mechanical damage Capacitance change: -1.0% ~+2.0% Q>500 I.R. >10 G Ohms Breakdown voltage: 2.5 x WVDC	Preheat device to 150° C- 180° C for 60 sec. Dip in 260° C $\pm 5^{\circ}$ C solder for 10 ± 1 sec. Measure after 24 ± 2 hour cooling period.
Thermal Shock	No mechanical damage Capacitance change: ±0.5% or 0.5pF max Q>2000 I.R. >10 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes. The time of removing shall not be more than 3 minutes. Perform the five cycles.
Humidity, Steady State	No mechanical damage Capacitance change: ±0.5% or 0.5pF max. Q>300 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 106.
Low Voltage Humidity	No mechanical damage Capacitance change: ±0.3% or 0.3pF max. Q>300 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	No mechanical damage Capacitance change: ±2.0% or 0.5pF max. Q>500 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 108, for 1000 hours, at 175°C. 200% Rated voltage D.C. applied.


Passive Plus Inc. RF & Microwave Capacitors

• 0201N Electrical Performance

0201N (.020" x .010")

First Parallel Resonant Frequency vs. Capacitance



The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A vertical orientation means the electrode planes are perpendicular to the substrate.

Passive Plus Inc. RF & Microwave Capacitors

0201N (.020" x .010")

• 0201N Performance Curve

First Series Resonant Frequency vs. Capacitance

The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the part of the input real impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] = 0, the FSR shall be considered as undefined. FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation. defined as alongside the FPR plot; and mounting pad dimensions.

Definitions and Measurement Conditions:

The definitions on the FPR and FSR charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with a 50-Ohm termination. The measurement conditions are: substrate -- Rogers RO3006; substrate dielectric constant = 6.15; substrate thickness (mils) = 10; gap in microstrip trace (mils) = 6.0; microstrip trace width (mils) = 14.1; **Reference planes at sample edges.**

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

S-Parameters can be found on the PPI website -- http://www.passiveplus.com/index.php

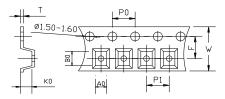
0201N (.020" x. 010")

• Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.


Horizontal Mounting

Tape & Reel Specifications

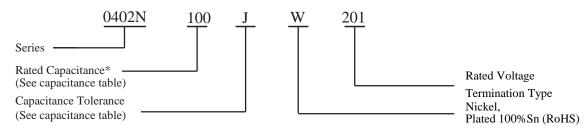
Orientation	EIA	A0	B0	K0	W	P0	P1	Т	F	X	QTY/ REEL	Tape Material
Horizontal	0201N	0.406	0.749	0.422	8.00	4.00	2.00	0.42	3.50	500	500	Paper

Horizontal Orientation

0402N (.040" x .020")

0402N (.040" x .020")

♦ 0402N Capacitance & Rated Voltage Table


Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC
0.1	0R1			2.0	2R0		50V	10	100		
0.2	0R2			2.1	2R1		Code 500	11	110		
0.3	0R3			2.2	2R2		or 200V	12	120		
0.4	0R4			2.4	2R4	A,B, C,D	Code	13	130		50V
0.5	0R5			2.7	2R7	- 7	201 or	15	150		Code
0.6	0R6			3.0	3R0		250V Code	16	160	F,G, J,K	500 or
0.7	0R7		50V	3.3	3R3		251	18	180	0,11	200V Code
0.8	0R8		Code 500	3.6	3R6			20	200		201
0.9	0R9		or 200V	3.9	3R9			22	220		
1.0	1R0	A,B, C,D	Code 201	4.3	4R3			24	240		
1.1	1R1	0,2	or 250V	4.7	4R7	A,B, C,D		27	270		
1.2	1R2		Code 251	5.1	5R1		50V Code	30	300	F,G,	50V
1.3	1R3		251	5.6	5R6		500 or	33	330	J,K	Code 500
1.4	1R4			6.2	6R2		200V Code				
1.5	1R5			6.8	6R8		201				
1.6	1R6			7.5	7R5						
1.7	1R7			8.2	8R2	A,B,C					
1.8	1R8			9.1	9R1						
1.9	1R9										

Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.

0402N (.040" x .020")

Part Numbering

* When capacitance is less than 1.0, use "R" for decimal

	Capacitance Tolerance							
Code	le A B C D F G J K							
Tol.	$\pm 0.05 pF$	$\pm 0.1 \text{pF}$	$\pm 0.25 pF$	$\pm 0.5 pF$	$\pm 1\%$	$\pm 2\%$	$\pm 5\%$	$\pm 10\%$

◆ 0402N Chip Dimensions

unit:inch(millimeter)

Terret			Capacitor Dimensions					
Series	Term. Code	Type/Outlines	Length Lc	Width Wc	Thickness Tc	Overlap B	Plated Material	
0402N	W	Lo B	040±.004 (1.02±0.1)	.020±.004 (0.51±0.1)	.020±.004 (0.51±0.1)	.010±.006 (0.25±0.15)	Sn/Ni (RoHS)	

Remark: for Non-Magnetic NP0 products please refer to page 67.

• Design Kits

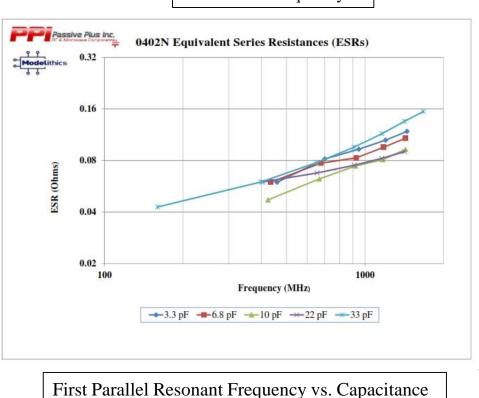
These capacitors are 100% RoHS. Kits are available in Magnetic termination and contain 10 (ten) pieces per value; number of values per kit varies, depending on case size and capacitance.

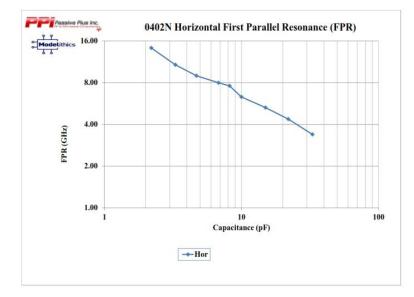
Kit	Description	Values	Tolerance
DKD0402N01	0402N .1pF - 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.6, 1.8, 2.0pF	+/1pF
DKD0402N02	0402N 1.0pF - 10pF	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF,	+/.1pF
DIADO4021102	0402101.001 - 1001	10pF	+/-5%
DKD0402N03	0402N 10 - 33pF	10, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33pF	+/-5%

0402N (.040" x .020")

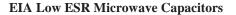
Performance

Item	Specifications		
Quality Factor (Q)	2,000 min @ 1MHz.		
Insulation Resistance (IR)	10 ⁵ Megohms min. @ +25 °C at rated WVDC 10 ⁴ Megohms min. @ +125 °C at rated WVDC		
Rated Voltage	See Rated Voltage Table		
Dielectric Withstanding Voltage (DWV)	250% of rated voltage for 5 seconds.		
Operating Temperature Range	-55°C to +175°C		
Temperature coefficient (TC)	0±30ppm/°C		
Capacitance Drift	$\pm 0.02\%$ or $\pm 0.02 \mathrm{pF}$, whichever is greater.		
Piezoelectric Effects	None		

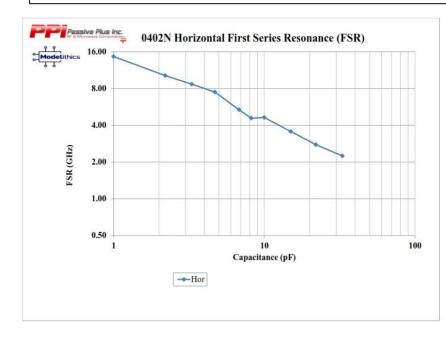

♦ Environmental Tests


Item	Specifications	Method
Terminal Adhesion	Termination should not pull off. Ceramic should remain undamaged.	Linear pull force exerted on axial leads soldered to each terminal. 2.0lbs.
Resistance To soldering heat	No mechanical damage Capacitance change: -1.0% ~ +2.0% Q>500 I.R. >10 G Ohms Breakdown voltage: 2.5 x WVDC	Preheat device to 150° C- 180° C for 60 sec. Dip in 260° C $\pm 5^{\circ}$ C solder for 10 ± 1 sec. Measure after 24 ± 2 hour cooling period.
Thermal Shock	No mechanical damage Capacitance change: ±0.5% or 0.5pF max Q>2000 I.R. >10 G Ohms Breakdown voltage: 2.5x WVDC	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes. The time of removing shall not be more than 3 minutes. Perform the five cycles.
Humidity, Steady State	No mechanical damage Capacitance change: ±0.5% or 0.5pF max. Q>300 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 106.
Low Voltage Humidity	No mechanical damage Capacitance change: ±0.3% or 0.3pF max. Q>300 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	No mechanical damage Capacitance change: ±2.0% or 0.5pF max. Q>500 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 108, for 1000 hours, at 175°C. 200% Rated voltage D.C. applied.

0402N (.040" x .020")


• 0402N Electrical Performance

The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend capacitor on orientation. A horizontal orientation means the electrode planes are parallel to the substrate.


ESR vs. Frequency

0402N (.040" x .020")

Passive Plus Inc. RF & Microwave Capacitors

First Series Resonant Frequency vs. Capacitance

The First Series Resonance. FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] = 0, the FSR shall be considered as undefined. FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, defined as alongside the FPR plot; and mounting pad dimensions.

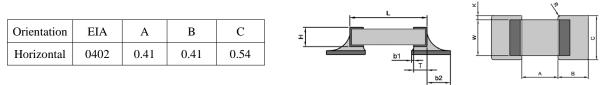
Definitions and Measurement conditions:

The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with a 50-Ohm termination. The measurement conditions are: substrate -- Rogers RO4350; substrate dielectric constant = 3.48; substrate thickness (mils) = 10; gap in microstrip trace (mils) = 15; microstrip trace width (mils) = 22; **Reference planes at sample edges.**

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

S-Parameters can be found on the PPI Website--http://www.passiveplus.com/index.php

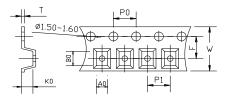
0402N (.040" x. 020")


Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.


• Horizontal Mounting

◆ Tape & Reel Specifications

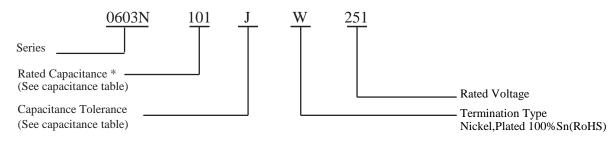
Orientation	EIA	A0	B0	K0	W	P0	P1	Т	F	•	QTY/ REEL	Tape Material
Horizontal	0402N	0.60	1.10	1.00	8.00	4.00	2.00	0.20	3.50	500	500	Paper

• Horizontal Orientation

0603N (.060" x .030")

0603N (.060" x .030")

Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC
0.1	0R1	A,B, C,D	250V Code 251	2.2	2R2		250V Code 251	16	160	F,G, J,K	250V Code 251
0.2	0R2			2.4	2R4			18	180		
0.3	0R3			2.7	2R7			20	200		
0.4	0R4			3.0	3R0	A,B, C,D		22	220		
0.5	0R5			3.3	3R3			24	240		
0.6	0R6			3.6	3R6			27	270		
0.7	0R7			3.9	3R9			30	300		
0.8	0R8			4.3	4R3			33	330		
0.9	0R9			4.7	4R7			36	360		
1.0	1R0			5.1	5R1			39	390		
1.1	1R1			5.6	5R6			43	430		
1.2	1R2			6.2	6R2	A, B,C		47	470		
1.3	1R3			6.8	6R8			51	510		
1.4	1R4			7.5	7R5			56	560		
1.5	1R5			8.2	8R2			62	620		
1.6	1R6			9.1	9R1			68	680		
1.7	1R7			10	100	F,G, J,K		75	750		
1.8	1R8			11	110			82	820		
1.9	1R9			12	120			91	910		
2.0	2R0			13	130			100	101		
2.1	2R1			15	150						


◆ 0603N Capacitance & Rated Voltage Table

Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.

0603N (.060" x .030")

Part Numbering

* When capacitance is less than 1.0, use "R" for decimal

	Capacitance Tolerance							
Code	Code A B C D F G J K							
Tol.	Tol. $\pm 0.05 pF$ $\pm 0.1 pF$ $\pm 0.25 pF$ $\pm 0.5 pF$ $\pm 1\%$ $\pm 2\%$ $\pm 5\%$ $\pm 10\%$							

• 0603N Chip Dimensions

unit: inch (millimeter)

	T			Capacitor Dimensions					
Series	Term. Code	Type/Outlines	Length Lc	Width Wc	Thickness Tc	Overlap B	Plated Material		
0603N	W	Lo We	.062±.006 (1.57±0.15)	.032±.006 (0.81±0.15)	.030 ±.005 ~003 (0.76 +0.13 ~ -0.08)	.014±.006 (0.35±0.15)	Sn/Ni (RoHS)		

Remark: for Non-Magnetic NP0 products please refer to page 94.

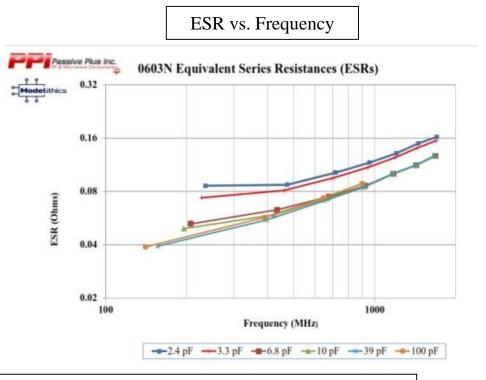
• Design Kits

These capacitors are 100% RoHS. Kits are available in Magnetic termination and contain 10 (ten) pieces per value; number of values per kit varies, depending on case size and capacitance.

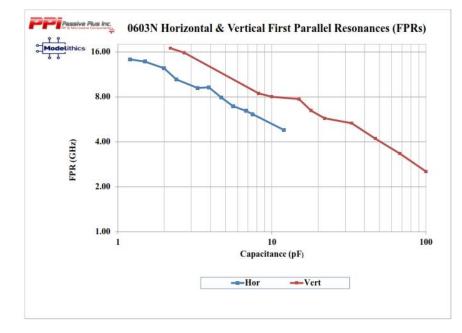
Kit	Description	Values	Tolerance
DKD0603N01	0603N .1pF - 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5, 1.6, 1.8, 2.0pF	+/1pF
DKD0603N02	0603N 1.0pF - 10pF	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF,	+/.1pF
DKD00051402	0005141.001 - 1001	10pF	+/-5%
DKD0603N03	0603N 10 - 100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	+/-5%

• Performance

0603N (.060" x .030")

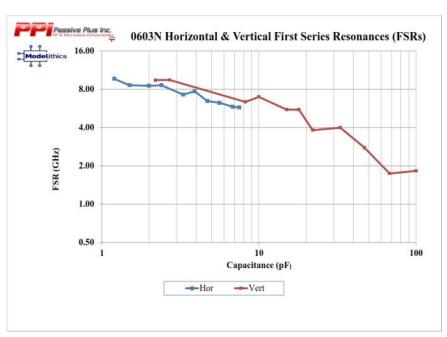

Item	Specifications
Quality Factor (Q)	2,000 min.
Insulation Resistance (IR)	10 ⁵ Megohms min. @ +25 °C at rated WVDC. 10 ⁴ Megohms min. @ +125 °C at rated WVDC.
Rated Voltage	250V
Dielectric Withstanding Voltage (DWV)	250% of rated Voltage for 5 seconds.
Operating Temperature Range	-55°C to +175°C
Temperature coefficient (TC)	0±30ppm/°C
Capacitance Drift	$\pm 0.02\%$ or $\pm 0.02pF$, whichever is greater.
Piezoelectric Effects	None

Environmental Tests


Item	Specifications	Method
Terminal Adhesion	Termination should not pull off. Ceramic should remain undamaged.	Linear pull force exerted on axial leads soldered to each terminal. 2.0lbs.
Resistance To soldering heat	No mechanical damage Capacitance change: -1.0% ~+2.0% Q>500 I.R. >10 G Ohms Breakdown voltage: 2.5 x WVDC	Preheat device to 150° C-180 °C for 60 sec. Dip in 260° C $\pm 5^{\circ}$ C solder for 10 ± 1 sec. Measure after 24 ± 2 hour cooling period.
Thermal Shock	No mechanical damage Capacitance change: ±0.5% or 0.5pF max Q>2000 I.R. >10 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55 °C and 175 °C) stay 30 minutes. The time of removing shall not be more than 3 minutes. Perform the five cycles.
Humidity, Steady State	No mechanical damage Capacitance change: ±0.5% or 0.5pF max. Q>300 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 106.
Low Voltage Humidity	No mechanical damage Capacitance change: ±0.3% or 0.3pF max. Q>300 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85 °C with 85% relative humidity for 240 hours minimum.
Life	No mechanical damage Capacitance change: ±2.0% or 0.5pF max. Q>500 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 108, for 1000 hours, at 175 °C. 200% Rated voltage D.C. applied.

0603N (.060" x .030")

• 0603N Electrical Performance Curves


First Parallel Resonant Frequency vs. Capacitance

The First Parallel Resonance. FPR, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend capacitor on orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; vertical а orientation means the electrode planes are perpendicular the to substrate.

0603N (.060" x .030")

First Series Resonant Frequency vs. Capacitance

The First Series Resonance. FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] = 0, the FSR shall be considered as undefined. FSR is dependent on internal capacitor structure; thickness substrate and dielectric constant; capacitor defined orientation, as alongside the FPR plot; and mounting pad dimensions.

Definitions and Measurement conditions:

The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with a 50-Ohm termination. The measurement conditions are: substrate - Rogers RT/duroid® 5880; substrate dielectric constant = 2.20; substrate thickness (mils) = 10; gap in microstrip trace (mils) = 23.7; microstrip trace width (mils) = 30.0; **Reference planes at sample edges.**

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

S-Parameters can be found on the PPI Website-- http://www.passiveplus.com/index.php

0603N (.060" x. 030")

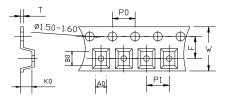
♦ Recommended Land Pattern Dimensions


When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

• Horizontal Mounting

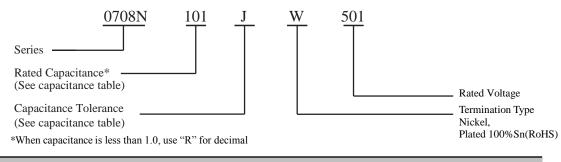

Orientation	EIA	А	В	C
Horizontal	0603	0.70	0.90	0.90

◆ Tape & Reel Specifications

Orientation	EIA	A0	B0	K0	W	P0	P1	Т	F	-	QTY/ REEL	Tape Material
Horizontal	0603N	0.95	1.80	0.85	8.00	4.00	4.00	0.20	3.50	500	500	Paper

• Horizontal Orientation

0708N (.070"x .080")


◆ 0708N Capacitance & Rated Voltage Table

Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC
1.0	1R0			3.9	3R9			22	220		
1.1	1R1			4.3	4R3			24	240		
1.2	1R2			4.7	4R7			27	270		
1.3	1R3			5.1	5R1			30	300		
1.4	1R4			5.6	5R6	B,C		33	330		
1.5	1R5			6.2	6R2			36	360		
1.6	1R6			6.8	6R8			39	390		
1.7	1R7		500V	7.5	7R5		500V	43	430		
1.8	1R8	B,C	Code	8.2	8R2		Code	47	470	G,J	500V Code
1.9	1R9	B,C	501	9.1	9R1		501	51	510	U,J	501
2.0	2R0			10	100			56	560		
2.1	2R1			11	110			62	620		
2.2	2R2			12	120			68	680		
2.4	2R4			13	130			75	750		
2.7	2R7			15	150	G,J		82	820		
3.0	3R0			16	160			91	910		
3.3	3R3			18	180			100	101		
3.6	3R6			20	200						

Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.

Part Numbering

	Capacitance Tolerance						
Code	В	С	D	G	J	К	
Tol.	±0.1pF	±0.25pF	$\pm 0.5 pF$	±2%	$\pm 5\%$	$\pm 10\%$	

• 0708N Chip Dimensions

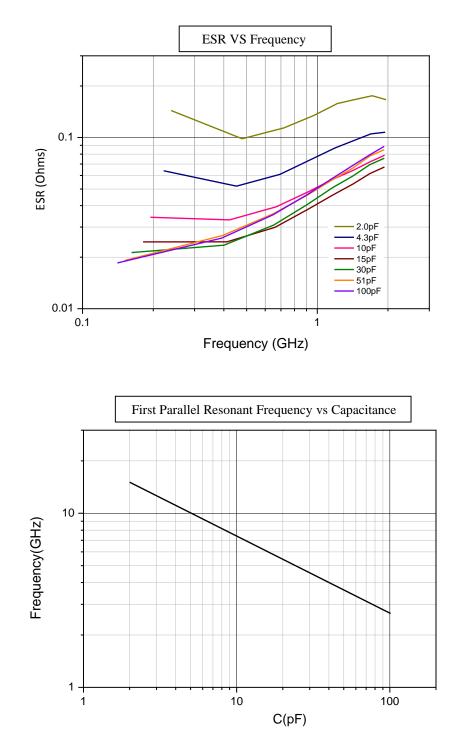
unit:inch(millimeter)

	Term.			Capacitor Dimensions					
Series	Code	Type/Outlines	Length Lc	Width Wc	Thickness Tc	Overlap B	Plated Material		
0708N	W	Tc Chip	.070±0.015 (1.78±0.38)	.080±.010 (2.03±0.25)	.115 (2.92)max	0.020±.010 (0.50±0.25)	Sn/Ni (RoHS)		

Note: When horizontally mounted, the electrodes are in vertical position

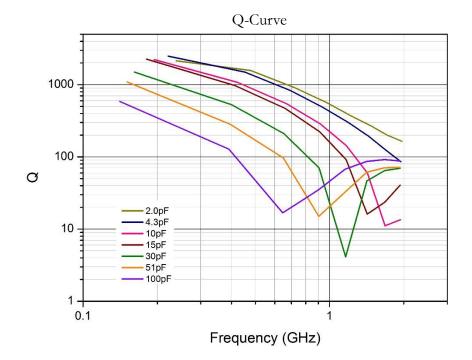
0708N (.070" x .080")

Performance


Item	Specifications
Quality Factor (Q)	2,000 min.
Insulation Resistance (IR)	10^5 Megohms min. @ +25 °C at rated WVDC. 10^4 Megohms min. @ +125 °C at rated WVDC.
Rated Voltage	See Capacitance Table
Dielectric Withstanding Voltage (DWV)	250% of Voltage for 5 seconds, Rated Voltage≤500VDC
Operating Temperature Range	-55°C to +175°C
Temperature coefficient (TC)	0±30ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.
Piezoelectric Effects	None

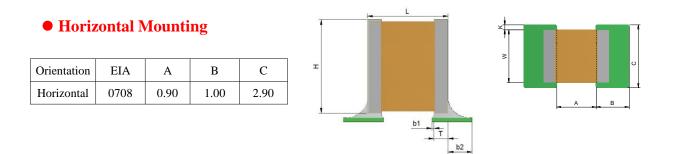
• Environmental Tests

Item	Specifications	Method
Terminal Adhesion	Termination should not pull off. Ceramic should remain undamaged.	Linear pull force exerted on axial leads soldered to each terminal. 2.0lbs.
Resistance To soldering heat	No mechanical damage Capacitance change: -1.0% ~+2.0% Q>500 LR. >10 G Ohms Breakdown voltage: 2.5 x WVDC	Preheat device to 150° C -180°C for 60 sec. Dip in 260° C $\pm 5^{\circ}$ C solder for 10 ± 1 sec. Measure after 24 ± 2 hour cooling period.
Thermal Shock	No mechanical damage Capacitance change: ±0.5% or 0.5pF max Q>500 I.R. >10 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes. The time of removing shall not be more than 3 minutes. Perform the five cycles.
Humidity, Steady State	No mechanical damage Capacitance change: ±0.5% or 0.5pF max. Q>300 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 106.
Low Voltage Humidity	No mechanical damage Capacitance change: ±0.3% or 0.3pF max. Q>300 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	No mechanical damage Capacitance change: ±2.0% or 0.5pF max. Q>500 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 108, for 1000 hours, at 175 °C. 200% of Voltage for Capacitors, Rated Voltage \leq 500VDC



• 0708N Electrical Performance Curves

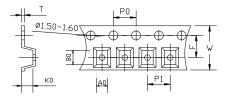
♦ 0708N Electrical Performance Curves



♦ Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.


2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

Tape & Reel Specifications

Orientation	EIA	A0	B0	K0	W	P0	P1	Т	F	QTY Min	QTY/ REEL	Tape Material
Horizontal	0708N	2.30	3.60	2.70	8.00	4.00	4.00	0.254	3.50	500	500	Paper

Horizontal Orientation

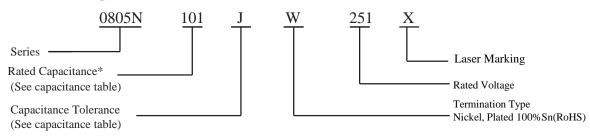
0805N (.080" x .050")

Passive Plus Inc.

0805N (.080" x .050")

Sp.

\$0805N Capacitance & Rated Voltage Table


Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC
0.1	0R1			3.0	3R0			30	300		
0.2	0R2			3.3	3R3			33	330		
0.3	0R3			3.6	3R6			36	360		
0.4	0R4			3.9	3R9	A,B,		39	390		
0.5	0R5			4.3	4R3	C,D		43	430		
0.6	0R6			4.7	4R7			47	470		
0.7	0R7			5.1	5R1			51	510		
0.8	0R8			5.6	5R6			56	560		
0.9	0R9			6.2	6R2			62	620		
1.0	1R0			6.8	6R8			68	680		
1.1	1R1		250V	7.5	7R5	B,C	250V	75	750		
1.2	1R2	A,B,	Code	8.2	8R2	В,С	Code	82	820	F,G,	250V Code
1.3	1R3	C,D	251	9.1	9R1		251	91	910	J,K	251
1.4	1R4			10	100			100	100		
1.5	1R5			11	110			110	111		
1.6	1R6			12	120			120	121		
1.7	1R7			13	130			130	131		
1.8	1R8			15	150	FC		150	151		
1.9	1R9			16	160	F,G, J,K		160	161		
2.0	2R0			18	180	,		180	181		
2.1	2R1			20	200			200	201		
2.2	2R2			22	220			220	221		
2.4	2R4			24	240						
2.7	2R7			27	270						

Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.

0805N (.080" x .050")

Part Numbering

*When capacitance is less than 1.0, use "R" for decimal

			C	apacitance Tol	erance						
Code	Code A B C D F G J K										
Tol.	Tol. $\pm 0.05 pF$ $\pm 0.1 pF$ $\pm 0.25 pF$ $\pm 0.5 pF$ $\pm 1\%$ $\pm 2\%$ $\pm 5\%$ $\pm 10\%$										

• 0805N Chip Dimensions

unit:inch(millimeter)

	Sories Term. Type/Outlines				Plated			
S	Series	Code	Type/Outlines	Length Lc	Width Wc	Thickness Tc	Overlap B	Material
0	805N	W	LC B	.080±.008 (2.03±0.20)	.050±.008 (1.27±0.20)	.040±.006 (1.02±0.15)	0.020±.010 (0.50±0.25)	Sn/Ni (RoHS)

Remark: for Non-Magnetic NP0 products please refer to page 94.

Design Kits

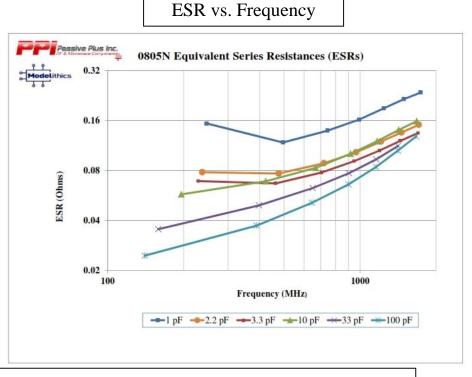
These capacitors are 100% RoHS. Kits are available in Magnetic termination and contain 10 (ten) pieces per value; number of values per kit varies, depending on case size and capacitance.

Kits	Description	Values	Tolerances
DKD0805N01	0805N .1pF - 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.6, 1.8, 2.0pF	+/1pF
DEDOSOSNO	0905N 10-E 10-E	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF,	+/1pF
DKD0805N02	0805N 1.0pF - 10pF	10pF	+/-5%
DKD0805N03	0805N 10pF - 100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	+/-5%
DKD0805N04	0805N 10pF - 220pF	10, 15, 18, 20, 24, 27, 30, 39, 47, 56, 68, 82, 100, 120, 150, 180, 220pF	+/-5%

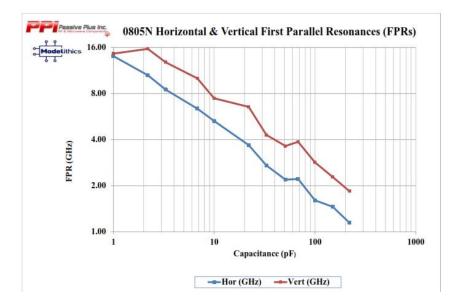
0805N (.080" x .050")

♦ Performance

Item	Specifications
Quality Factor (Q)	2,000 min.
Insulation Resistance (IR)	 10⁵ Megohms min. @ +25 °C at rated WVDC. 10⁴ Megohms min. @ +125 °C at rated WVDC.
Rated Voltage	250V
Dielectric Withstanding Voltage (DWV)	250% of rated Voltage for 5 seconds.
Operating Temperature Range	-55°C to +175°C
Temperature coefficient (TC)	0±30ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.
Piezoelectric Effects	None


Environmental Tests

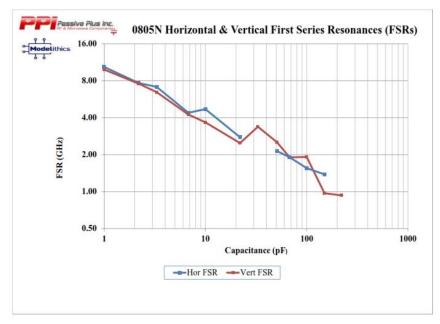
Item	Specifications	Method
Terminal Adhesion	Termination should not pull off. Ceramic should remain undamaged.	Linear pull force exerted on axial leads soldered to each terminal. 2.0lbs.
Resistance To soldering heat	No mechanical damage Capacitance change: -1.0% ~+2.0% Q>500 I.R. >10 G Ohms Breakdown voltage: 2.5 x WVDC	Preheat device to 150 °C-180 °C for 60 sec. Dip in $260 \text{ °C} \pm 5 \text{ °Csolder}$ for 10 ± 1 sec. Measure after 24 ± 2 hour cooling period.
Thermal Shock	No mechanical damage Capacitance change: ±0.5% or 0.5pF max Q>2000 I.R. >10 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature(-55 °C and 175 °C) stay 30 minutes. The time of removing shall not be more than 3 minutes. Perform the five cycles.
Humidity, Steady State	No mechanical damage Capacitance change: ±0.5% or 0.5pF max. Q>300 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 106.
Low Voltage Humidity	No mechanical damage Capacitance change: ±0.3% or 0.3pF max. Q>300 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85 °C with 85% relative humidity for 240 hours minimum.
Life	No mechanical damage Capacitance change: ±2.0% or 0.5pF max. Q>500 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 108, for 1000 hours, at 175 °C. 200% Rated voltage D.C. applied.



0805N (.080" x .050")

• 0805N Electrical Performance

First Parallel Resonant Frequency vs. Capacitance



The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of thickness substrate or dielectric constant, but does depend capacitor on orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; vertical а orientation the means electrode planes are perpendicular to the substrate.

Passive Plus Inc. RF & Microwave Capacitors.

EIA Low ESR Microwave Capacitors

0805N (.080" x .050")

First Series Resonant Frequency vs. Capacitance

The First Series Resonance, FSR, is defined as the lowest frequency which at the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] = 0, the FSR shall be considered as undefined. FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions.

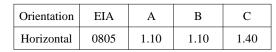
Definitions and Measurement conditions:

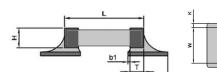
The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with a 50-Ohm termination. The measurement conditions are: substrate -- Rogers RO3003; substrate dielectric constant = 3.00; substrate thickness (mils) = 23; gap in microstrip trace (mils) = 23.6; microstrip trace width (mils) = 57.1; **Reference planes at sample edges**.

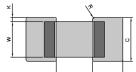
All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

S-Parameters can be found on the PPI Website -- http://www.passiveplus.com/index.php

0805N (.080" x .050")

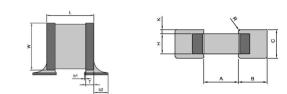

Recommended Land Pattern Dimensions


When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

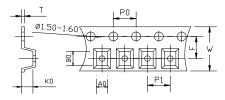

1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

• Horizontal Mounting



• Vertical Mounting


Orientation	EIA	А	В	C
Vertical	0805	1.10	1.10	1.40

Tape & Reel Specifications

Orientation	EIA	A0	B0	K0	W	P0	P1	Т	F	QTY Min	~	Tape Material
Horizontal	0805N	1.60	1.60	2.40	8.00	4.00	4.00	0.20	3.50	500	500	Paper

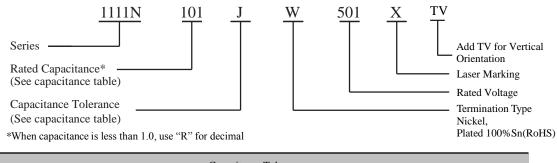
• Horizontal Orientation

PPP Passive Plus Inc.

1111N (.110"x .110")

EIA Low ESR Microwave Capacitors

1111N (.110" x .110")


♦ 1111N Capacitance & Rated Voltage Table

Cap. pF	Code	Tol.	WVDC V	Cap. pF	Code	Tol.	WVDC V	Cap. pF	Code	Tol.	WVDC V	Cap. pF	Code	Tol.	WVDC V
0.2	0R2			3.0	3R0			27	270			220	221		
0.3	0R3			3.3	3R3			30	300			240	241		
0.4	0R4			3.6	3R6			33	330			270	271	F,	200V
0.5	0R5			3.9	3R9			36	360			300	301	G, J,	Code
0.6	0R6			4.3	4R3			39	390		500V	330	331	К	201 500V
0.7	0R7			4.7	4R7	А, В,		43	430		Code 501	360	361		Code
0.8	0R8			5.1	5R1	С,		47	470		Or 1000V	390	391		501
0.9	0R9			5.6	5R6	D		51	510		Code	430	431		
1.0	1R0			6.2	6R2		500V	56	560		102	470	471		
1.1	1R1		500V Code	6.8	6R8		Code 501	62	620	F		510	511		100V Code
1.2	1R2	А,	501 Or	7.5	7R5		Or 1000V	68	680	F, G,		560	561		101 500V
1.3	1R3	B, C,D	1000V	8.2	8R2		Code	75	750	J, K		620	621		Code 501
1.4	1R4	- /	Code 102	9.1	9R1		102	82	820			680	681		
1.5	1R5			10	100			91	910			750	751	G,	50V
1.6	1R6			11	110			100	100			820	821	J, K	Code
1.7	1R7			12	120			110	111			910	911	к	500
1.8	1R8			13	130	F,		120	121		300V Code	1000	102		
1.9	1R9			15	150	Г, G,		130	131		301				
2.0	2R0			16	160	J, K		150	151		600V Code				
2.1	2R1			18	180	IX.		160	161		601				
2.2	2R2			20	200			180	181						
2.4	2R4			22	220			200	201						
2.7	2R7			24	240										

Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.

Part Numbering

	Capacitance Tolerance											
Code	A B C D F G J K											
Tol.	$\pm 0.05 pF$	$\pm 0.1 \text{pF}$	$\pm 0.25 pF$	$\pm 0.5 pF$	$\pm 1\%$	±2%	$\pm 5\%$	$\pm 10\%$				

1111N Chip Dimensions

unit:inch(millimeter)

	Term.			Capacitor Dimensions						
Series	Code	Type/Outlines	Length Lc	Width Wc	Thickness Tc	Overlap B	Plated Material			
1111N	W	TRI	.110 ±.020~010 (2.79 +0.51~-0.25)	(2.79 ± 0.38)	.10 (2.6) Max	0.015 0.024 Max.	Sn/Ni (RoHS)			

Remark: for Non-Magnetic NP0 products please refer to page 94.

Design Kits

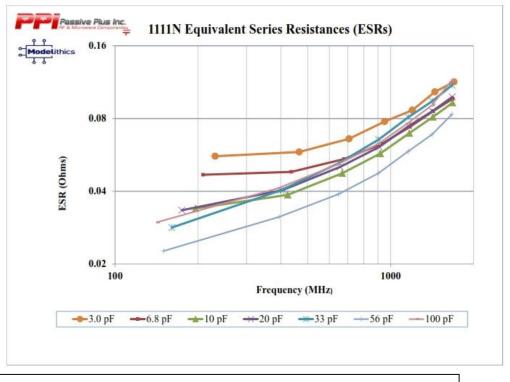
1111N (.110" x .110")

These capacitors are 100% RoHS. Kits are available in Magnetic termination and contain 10 (ten) pieces per value; number of values per kit varies, depending on case size and capacitance.

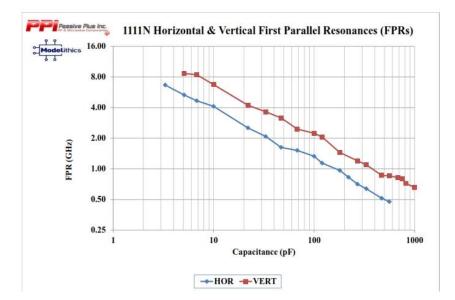
Kit	Description	Values	Tolerances
DKD1111N01	1111N0 2-E 10-E	0.2, 0.5, 0.7, 0.8, 1.0, 1.2, 1.5, 1.8, 2.0, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF,	+/1pF
DKD1111N01	1111N 0.2pF - 10pF	10pF	+/-5%
DKD1111N02	1111N 10-100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	+/-5%
DKD1111N03	1111N 100-1000pF	100, 120, 150, 180, 200, 220, 240, 270, 300, 390, 470, 560, 680, 820, 1000pF	+/-5%

Performance

Item	Specifications
Quality Factor (Q)	2,000 min.
Insulation Resistance (IR)	10^5 Megohms min. @ +25 °C at rated WVDC. 10^4 Megohms min. @ +125 °C at rated WVDC.
Rated Voltage	See Capacitance Table
Dielectric Withstanding Voltage (DWV)	250% of Voltage for 5 seconds, Rated Voltage≤500VDC 150% of Voltage for 5 seconds, 500VDC <ratedvoltage≤1250vdc 120% of Voltage for 5 seconds, Rated Voltage>1250VDC</ratedvoltage≤1250vdc
Operating Temperature Range	-55°C to +175°C
Temperature coefficient (TC)	0±30ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater.
Piezoelectric Effects	None

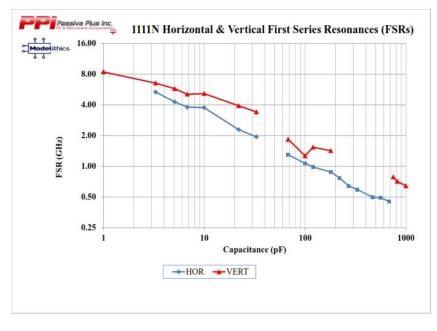

♦ Environmental Tests

Item	Specifications	Method
Terminal Adhesion	Termination should not pull off. Ceramic should remain undamaged.	Linear pull force exerted on axial leads soldered to each terminal. 2.0lbs.
Resistance To soldering heat	No mechanical damage Capacitance change: -1.0% ~+2.0% Q>500 I.R. >10 G Ohms Breakdown voltage: 2.5 x WVDC	Preheat device to 150° C - 180° C for 60 sec. Dip in 260° C $\pm 5^{\circ}$ C solder for 10 ± 1 sec. Measure after 24 ± 2 hour cooling period.
Thermal Shock	No mechanical damage Capacitance change: ±0.5% or 0.5pF max Q>500 I.R. >10 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes. The time of removing shall not be more than 3 minutes. Perform the five cycles.
Humidity, Steady State	No mechanical damage Capacitance change: ±0.5% or 0.5pF max. Q>300 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 106.
Low Voltage Humidity	No mechanical damage Capacitance change: ±0.3% or 0.3pF max. Q>300 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 103, Condition A, with 1.5 Volts D.C. applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	No mechanical damage Capacitance change: ±2.0% or 0.5pF max. Q>500 I.R. >1 G Ohms Breakdown voltage: 2.5 x WVDC	MIL-STD-202, Method 108, for 1000 hours, at 175°C. 200% of Voltage for Capacitors, Rated Voltage ≤500VDC 120% of Voltage for Capacitors, 500VDC < Rated Voltage ≤1250VDC 100% of Voltage for Capacitors, Rated Voltage > 1250VDC



◆ 1111N Electrical Performance Curves

ESR vs. Frequency



First Parallel Resonant Frequency vs. Capacitance

The First Parallel Resonance, FPR, is defined as the lowest frequency at which a suckout or notch appears in |S21|. It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; a vertical orientation means the planes electrode are perpendicular to the substrate.

First Series Resonant Frequency vs. Capacitance

The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the part the input real of impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] = 0, the FSR shall considered be as undefined. FSR is dependent on internal capacitor structure; substrate thickness and dielectric constant; capacitor orientation, defined as alongside the FPR plot; and mounting pad dimensions.

Definitions and Measurement conditions:

The definitions on the charts are for a capacitor in a series configuration, i.e., mounted across a gap in a microstrip trace with a 50-Ohm termination. The measurement conditions are: substrate -- Rogers RO4350; substrate dielectric constant = 3.48; horizontal mount substrate thickness (mils) = 55; vertical mount substrate thickness (mils) = 45; gap in microstrip trace, horizontal or vertical mount (mils) = 61.1; horizontal mount microstrip trace width (mils) = 123.7; vertical mount microstrip trace width (mils) = 101.0. **Reference planes at sample edges.**

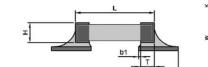
All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.

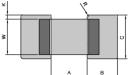
S-Parameters can be found on the PPI Website -- http://www.passiveplus.com/index.php

Recommended Land Pattern Dimensions

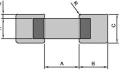
When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

1) The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

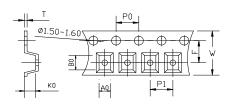

2) In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.

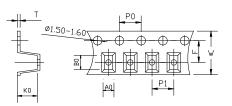

Horizontal Mounting

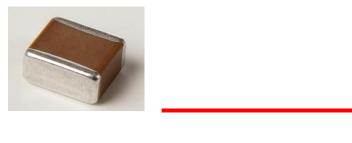
Orientation	EIA	А	В	C
Horizontal	1111	1.90	1.70	2.90


• Vertical Mounting

Orientation	EIA	А	В	C
Vertical	1111	1.90	1.70	2.50




Tape & Reel Specifications


Orientation	EIA	A0	B0	K0	W	P0	P1	Т	F	~	QTY/ REEL	Tape Material
Horizontal	1111N	2.92	3.51	2.34	8.00	4.00	4.00	0.254	3.50	500	500	Embossed
Vertical	1111N	2.92	3.51	2.34	8.00	4.00	4.00	0.254	3.50	500	500	Embossed

Horizontal Orientation

Vertical Orientation

X7R RF By-Pass Capacitors

X7R RF By-Pass Capacitors

0505X (.055"x .055")

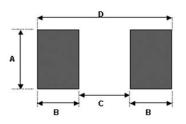
Passive Plus Inc.

0505X (.055" x .055")

◆ 0505X Capacitance & Rated Voltage Table

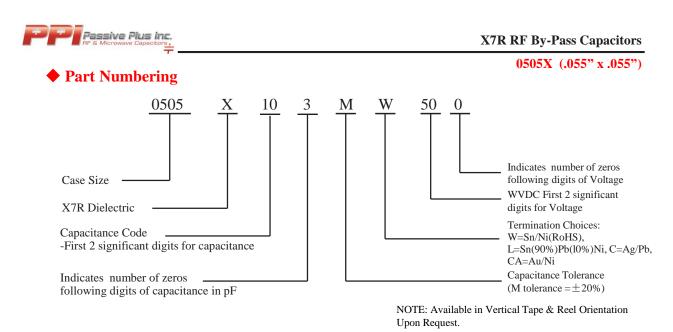
Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC
470	471			1500	152			4700	472		
560	561			1800	182			5000	502		
680	681		50V	2200	222		50V	5600	562		50V
820	821	K,M	Code 500	2700	272	K,M	Code 500	6800	682	K,M	Code 500
1000	102		300	3300	332		300	8200	822		300
1200	122			3900	392			10000	103		

Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.

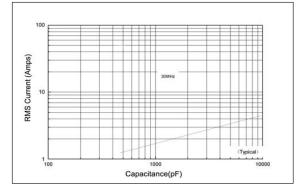

0505X Dimensions

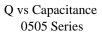
- 0505A I	Dimens	10115				ι	unit:inch(millimeter)
Series	Term. Code	Type/Outlines	Length(Lc)	Width(Wc)	Thickness(Tc)	В	Plated Material
	W						Sn/Ni
	Р		.055+.015		.057	.014	Sn/Cu
0505X	L	T. I. August	~010 (1.40+0.38	$.055 \pm .015$ (1.40 ± 0.38)	(1.45)	$\pm .006$ (.356	Sn (90%)/Pb(10%)
	С		~ -0.25)	(1.10 ± 0.50)	max	± 0.152)	Ag/Pb
	CA	Chip					Au/Ni

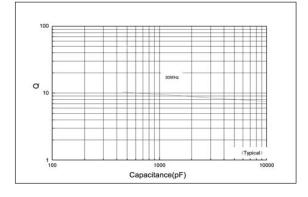
• 0505X Recommended Mounting Pads


Size	A Min. B Min.		C Min.	D Min.
VERT	.070"	.050"	.030"	.130"
HORIZ	.080"	.050"	.030"	.130"

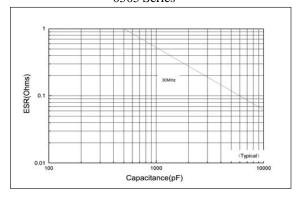
VERT= Vertical Mount, HORIZ = Horizontal Mount

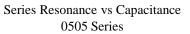

Performance

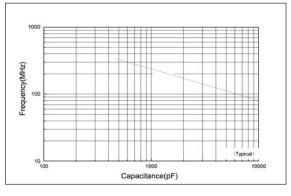

Item	Specifications
Operating Temperature Range	-55°C to +125°C
Insulation Resistance (IR)	Insulation resistance @ $+25^{\circ}C > 1000\Omega F$. Insulation resistance @ $+125^{\circ}C > 100\Omega F$.
Temp Voltage Coefficient	+15/-25% △C (-55°C to +125°C)
Dielectric Withstanding Voltage (DWV)	2.5X WVDC, 5 seconds.
Max Dissipation Factor	.025(2.5%) Max
Test Parameters	1KHz, 1.0VRMS, 25°C.
Terminal Strength	5lbs min per Mil-STD-202 method 211
Aging	3% max per decade hour
Working Voltage	See table



• 0505X Performance Curves


Current Rating vs Capacitance 0505 Series





ESR vs Capacitance 0505 Series

X7R RF By-Pass Capacitors

1111X (.110" x .110")

Passive Plus Inc.

1111X (.110" x .110")

1111X Capacitance & Rated Voltage Table

unit:inch(millimeter)

	ap. F	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC	Cap. pF	Code	Tol.	Rated WVDC
47	'00'	472			15000	153			47000	473		
56	500	562			18000	183			50000	503		
68	300	682		50V	22000	223		50V	56000	563		50V
82	200	822	K,M	Code	27000	273	K,M	Code	68000	683	K,M	Code 500
100	000	103		500	33000	333		500	82000	823		500
120	000	123			39000	393			100000	104		

Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.

1111X Dimensions

Term. Series Type/Outlines Length(Lc) Width(Wc) Thickness(Tc) В Plated Material Code W Sn/Ni .110+.025 .020 Р Sn/Cu .102 ~ -.010 $.110 {\pm} .015$ $\pm.010$ 1111X L (2.59) Sn (90%)/Pb(10%) (2.79+0.64) (2.79 ± 0.38) (0.508 Max С Ag/Pb ~ -0.25) ±0.25) Chip CA Au/Ni

1111X Recommended Mounting Pads

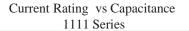
Size	A Min. B Min.		C Min.	D Min.	
VERT	.120"	.050"	.075"	.175"	
HORIZ	.130"	.050"	.075"	.175"	

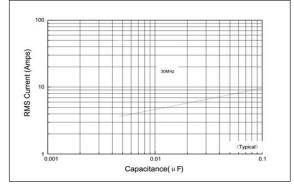
VERT= Vertical Mount, HORIZ = Horizontal Mount

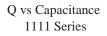
Performance

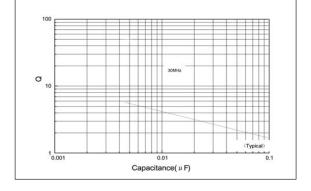

Item	Specifications
Operating Temperature Range	-55°C to +125°C
Insulation Resistance (IR)	Insulation resistance @ $+25^{\circ}C > 1000\Omega F$ Insulation resistance @ $+125^{\circ}C > 100\Omega F$
Temp Voltage Coefficient	+15/-25% △C (-55°C to +125°C)
Dielectric Withstanding Voltage (DWV)	2.5X WVDC, 5 seconds.
Max Dissipation Factor	.025 (2.5%) Max
Test Parameters	1KHz,1.0VRMS,25°C

Passive Plus Inc.

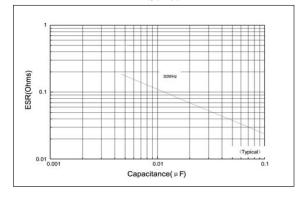

X7R RF By-Pass Capacitors

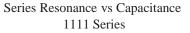

1111X (.110" x .110")

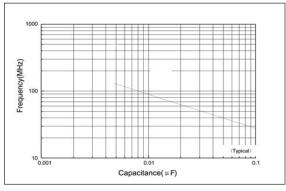

Part Numbering

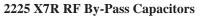


1111X Performance Curves









ESR vs Capacitance 1111 Series

2225X (.220" x .250")

2225X (.220" x .250")

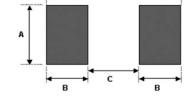
◆ 2225X Capacitance & Rated Voltage Table

Cap. uF	Code	Tol.	Rated WVDC	Cap. uF	Code	Tol.	Rated WVDC	Cap. uF	Code	Tol.	Rated WVDC	
0.010	103			0.082	823		200V	0.330	334			
0.012	123		300V	0.100	104			0.470	474		150V	
0.015	153		Code	0.120	124			0.560	564		Code	
0.022	223	K,M	301	0.150	154	K,M	Code	0.680	684	K,M	151	
0.033	333		250V	0.220	224		201	0.820	824		100V	
0.047	473			Code					1.000	105		Code
0.068	683		251								101	

Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.

2225X Dimensions

							unit.men(initimeter)
Series	Term. Code	Type/Outlines	Length (Lc)	Width (Wc)	Thickness (Tc)	В	Plated Material
	W						Sn/Ni (RoHS)
	Р	- Martin	.230+.020	250 ± 0.15	.165	.030	Cu (RoHS)
2225X	L	Te I	~012 (5.84+0.51	$.250 \pm .015$ (6.35 ± 0.38)	(4.19)	$\pm .015$ (0.762	Sn (90%)/Pb(10%)
	С	Chip	~ -0.30)	(0.55±0.58)	Max	± 0.38	Ag/Pb
	CA	Chip	, í			,	Au/Ni


◆ 2225X Recommended Mounting Pads

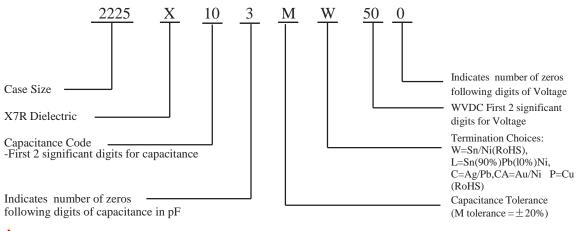
Size	A Min.	B Min.	C Min.	D Min.	
VERT	.185"	.050"	.200"	.300"	
HORIZ	.280"	.050"	.200"	.300"	

VERT= Vertical Mount, HORIZ = Horizontal Mount

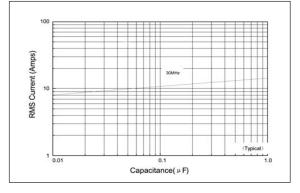
Performance

Item	Specifications
Operating Temperature Range	-55°Cto +125°C
Insulation Resistance (IR)	Insulation resistance @ $+25^{\circ}C > 1000\Omega F$ Insulation resistance @ $+125^{\circ}C > 100\Omega F$
Temp Voltage Coefficient	$\pm 15\%$ Maximum
Dielectric Withstanding Voltage (DWV)	2.5X WVDC, 5 seconds.
Max Dissipation Factor	.025(2.5%)Max
Test Parameters	1KHz,1.0VRMS,25°C

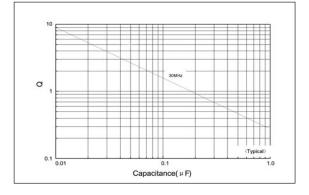
D


unit:inch(millimeter)

X7R RF By-Pass Capacitors

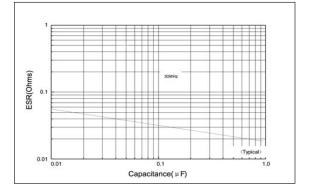

2225X (.220" x .250")

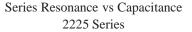
Part Numbering

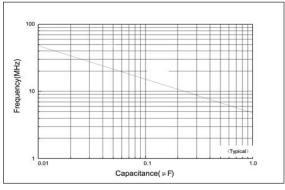


2225X Performance Curves

Current Rating vs Capacitance 2225 Series





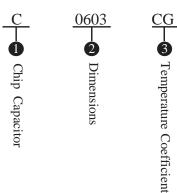


NOTE: Available in Vertical Tape & Reel Orientation Upon Request.

ESR vs Capacitance 2225 Series

EIA High Q Non-Magnetic Multilayer Ceramic Capacitors

EIA High Q Non-Magnetic Multilayer Ceramic Capacitors


NP0 Dielectric Non-Magnetic Multilayer Ceramic Capacitors

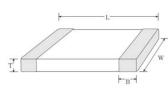
Product Features

e tot tot

Non-Magnetism, Suitable for MRI

♦ Part Numbering

Tolerance



P

Termination Type

① Chip Capacitor

^② Dimensions

Tuno		Din	nensions (Unit:	mm)	
Туре	L	W	B(max)		
0603	1.6±0.1	0.8 ± 0.1	0.8 ± 0.1	0.20	0.50
0805	2.0 ± 0.2	1.2 ± 0.2	1.40	0.25	0.70
1206	3.2 ± 0.2	1.6 ± 0.2	1.40	0.25	0.76
1210	3.2 ± 0.2	2.5 ± 0.2	2.00	0.25	0.76

③ Temperature Coefficient

Code(EIA)	Temperature Coefficients	Operating Temperature Range
CG (C0G)	0±30ppm/°C	-55°C~ +125°C

④ Rated Capacitance

Code	Capacitance
1R5	1.5pF
101	100pF

⑤ Tolerance

Code	Tolerance	Capacitance Range
В	$\pm 0.1 \text{pF}$	
С	±025pF	<10pF
D	$\pm 0.5 \text{pF}$	
F	±1%	
G	±2%	≥10pF
J	±5%	

EIA High Q Non-Magnetic Multilayer Ceramic Capacitors

Termination Type Non-magnetic Copper

Plated 100% Sn (RoHS)

⑦ Termination Type

Code

Р

[©] Rated Voltage

Code	Rated Voltage (DC)	Code	Rated Voltage (DC)
25	25V	251	250V
50	50V	501	500V
101	100V	102	1000V
201	200V	202	2000V

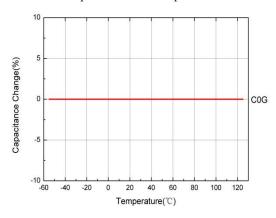
Packing Type

Code	Packing Type
Т	Tape carrier packing

♦ Rated Capacitance Range Table (Unit:pF)

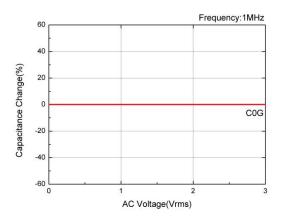
	Size			0603				08	05					1206					1210					
Cap.pF	code	25V	50V	100V	200V	250V	50V	100V	200V	250V	50V	100V	200V	250V	500V	1000V	2000V	50V	100V	200V	250V	500V	1000V	2000V
10	100																							
15	150																							
22	220																							
33	330																							
47	470																							
68	680																							
100	101																							
150	151																							
220	221																							
330	331																							
470	471																							
680	681																							
1000	102																							
1500	152																							
2200	222																							
3300	332																							
4700	472																							
6800	682																							
10000	103																							
15000	153																							

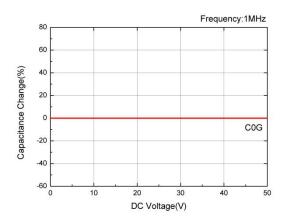
Remark: special capacitance, tolerance and WVDC are available, consult with PASSIVE PLUS.


♦ Tape & Reel Specifications

Orientation	EIA	A0	B0	K0	w	P0	P1	Т	F	MIN /REEL	QTY/ REEL	TAPE MATERIAL
Horizontal	0603	1.05	1.80	0.90	8.00	4.00	4.00	0.90	3.50	1000	4000	Paper
Horizontal	0805	1.40	2.20	1.20	8.00	4.00	4.00	0.22	3.50	1000	3000	Plastic
Horizontal	1206	1.91	3.51	1.30	8.00	4.00	4.00	0.25	3.50	1000	3000	Plastic
Horizontal	1210	2.85	3.50	1.95	8.00	4.00	4.00	0.25	3.50	1000	3000	Plastic

Characteristics Curve


Capacitance vs Temperature


25 20 15 Capacitance Change(%) 10 5 0 COG -5 -10 -15 -20 -25 -30 10 100 1000 10000 100000 1 Time(hours)

Capacitance Change vs Aging

Capacitance Change vs AC Voltage

Capacitance Change vs DC Voltage

♦ Specifications and Test Methods

NO.	Item	Specification	Test Method							
1	Operating Temperature Range	-55 °C ~ +125 °C								
2	Rated Voltage	See pages 68	The rated voltage means the maximum direct voltage or peak value of pulse voltage which may be applied continuously to a capacitor							
3	Appearance	No defects or abnormality	Visual inspection							
4	Dimensions	See the previous pages	Callipers inspection							
5	Dielectric Strength	No defects or abnormality	2.5 RV for 5 seconds, RV ≦500VDC; 1.5 RV for 5 seconds, 500VDC < RV ≦1250V DC; 1.2 RV for 5 seconds, RV >1250VDC; RV-Rated Voltage,							
6	Insulation Resistance	More than $10G\Omega$	The insulation resistance shall be measured with the rated voltage at 25° C, 75% oRH and within 1 minute of charging.							
7	Capacitance	Within the specified tolerance	The capacitance/Q shall be measured at 25 $^{\circ}$ C with the frequency and voltage shown in the table.							
8	Q	Q is not less than 1000	FrequencyVoltage1±0.1MHz1±0.2Vrms							
9	Temperature Coefficient	0±30ppm/°C Capacitance drift: Within 0.2% or 0.055 F	The temperature cycling sequential is from the step 1 through 5. The temperature coefficient shall be within the specified tolerance for the temperature coefficient. The temperature coefficient equals [(Ci-C3)/C3]/(Ti-T3). The capacitance drift is calculated by dividing the differences between the maximum and minimum measured values in the Step 1, 3 and 5 by the capacitance value in Step 3.							
		Within 0.3% or 0.05pF (whichever is greater)	Step Temperature							
			1 25±2 ℃							
			2 55±3 ℃							
			3 25±2 °C							
			4 125±3 ℃							
			5 25±2 °C							
10	Adhesive strength of termination	No removal of the terminations or other defect shall occur	Solder a capacitor to test jig (glass epoxy board) shown in fig below using a eutectic solder, then apply 10N force in the direction of the arrow. The soldering should be done either by hand iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock. 10NewtonGlass Epoxy Resin Board							
			Giass Epoxy Resin Board							

NO.		Item	Specification	Test Method			
		Appearance	No defect or abnormality	Solder the capacitor to test jig (glass epoxy board) shown in fig below. Soldering should be done either by hand iron of using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock. The capacitor shall be subjected to a simple harmonic			
11	Vibration Resistance	Capacitance	Within the specified tolerance	motion having a total amplitude of 1.5 mm. The frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total 6 hours).			
		Q	Q≥1000	A PA			
12	De	eflection	No cracking or marking defects shall occur, ∆ C/C<5%	Solder the capacitor to the glass epoxy boards shown in below fig. Then apply a force in the direction and measured the capacitance.			
13	Solderabilit	y of Termination	More than 75% of the terminations is to be soldered evenly and continuously.	Immerse the capacitor first in an ethanol solution of rosin. Preheat at 80 °C to 120 °C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2 ± 0.5 seconds at 250 ± 5 °C.			
		Appearance	No marking defects				
14	Resistance to Soldering	Capacitance Range	Less than $\pm 2.5\%$ or $\pm 0.25 \text{pF}$ (Whichever is larger)	Preheat capacitor at 120 °C to 200 °C for 1 minute. Then immerse the capacitor in a eutectic solder at 260 °C to 265 °C			
14	Heat	Q	Q≥1000	for 10 ± 1 second, the immersed depth is 10mm. Set it for 24 ± 2 hours at room.			
		Insulation Resistance	More than $10 { m G} \Omega$				

♦ Specifications and Test Methods

• Specifications and Test Methods

NO.	I	em	Specification		Test Method						
		Appearance	No marking defects	man Perf treat	the capacitor to the supporting jig is ner and under the same conditions orm the five cycles according to the ments listed in the following table.	as (11). e four heat					
		Capacitance	Less than $\pm 2.5\%$ or $\pm 0.25 \text{pF}$	Set i	Set it for 24 ± 2 hours at room temperature.						
	Temperature	Range	(Whichever is larger)	Step	Temperature(°C)	Time(minutes)					
15	Cycle			1	Min.operating temp3 to 0	30±3					
		Q	Q≥1000	2	Room temperature	2to3					
				3	Max.operating temp3 to 0	30±3					
		Insulation	More than $10G\Omega$	4	Room temperature	2to3					
		Resistance	More than 10022								
		Appearance	No marking defects								
16	Humidity	Capacitance Range	Less than ±5% or ±0.5pF (Whichever is larger)		the capacitor at 40 ± 2 °C and 90% t 500 ± 12 hours.	to 95% humidity					
10	Steady State	Q	Q≥1000	Remove and let sit for 24 ± 2 hours at room temperature, then measure.							
		Insulation Resistance	More than 1GΩ								
		Appearance	No marking defects								
		Capacitance	Less than $\pm 7.5\%$ or ± 0.75 pF		Apply the rated voltage(500Vmax) at 40 \pm 2 °C and 90%						
17	Humidity	Range	(Whichever is larger)		5% humidity for 500 ± 12 hours. hove and let sit for 24 ± 2 hours at	room					
17	Load	Q	Q≥1000	tem	perature, then measure.						
		Insulation Resistance	More than $1 \mathrm{G}\Omega$	The	The charge/discharge current is less than 50mA.						
		Appearance	No marking defects		ly a voltage for 1000 ± 12 hours at t for 24 ± 2 hours at room temperat						
	TT' 1	Capacitance	Less than $\pm 3\%$ or $\pm 0.3 \text{pF}$	1	charge/discharge current is less tha						
18	High Temperature	Range	(Whichever is larger)	I ^^	ly voltage:						
	Load	Q	Q≥1000		00V, apply 200% rated voltage; V, apply 150% rated voltage;						
		Insulation Resistance	More than $1 \mathrm{G}\Omega$	1	00V, apply 120% rated voltage;						

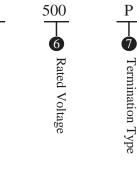
Κ

5 Tolerance

X7R Dielectric Non-Magnetic Multilayer Ceramic Capacitors

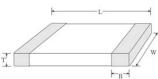
Х

Temperature Characteristic


Product Features

Non-Magnetism, Suitable for MRI

Part Numbering



① Chip Capacitor

^② Dimensions

Tuno		Dimensions (Unit:mm)											
Туре	L W		T (max)	B(min)	B(max)								
0603	1.6±0.1	0.8 ± 0.1	0.8 ± 0.1	0.20	0.50								
0805	2.0 ± 0.2	1.2 ± 0.2	1.40	0.25	0.70								
1206	3.2 ± 0.2	1.6 ± 0.2	1.40	0.25	0.76								
1210	3.2 ± 0.2	2.5 ± 0.2	2.00	0.25	0.76								

③ Temperature Characteristics

Code (EIA)	Temperature Coefficients	Operating Temperature Range
X(X7R)	$\pm 15\%$	-55°C~ +125°C

④ Rated Capacitance

Code	Capacitance
102	1000pF
222	2200pF

6 Rated Voltage

Code	Rated Voltage (DC)	Code	Rated Voltage (DC)
25	25V	251	250V
50	50V	501	500V
101	100V	102	1000V
201	200V	202	2000V

(5) Tolerance

Code	Tolerance
J	$\pm 5\%$
K	$\pm 10\%$
М	$\pm 20\%$

EIA X7R Dielectric Non-Magnetic Multilayer Ceramic Capacitors

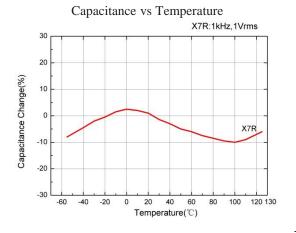
Depending on quantity required,

parts will be supplied on cut tape or tape & reel.

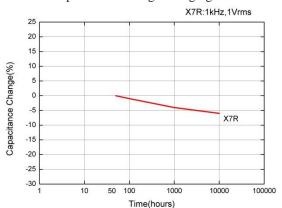
Packaging Type

⑦ Termination Type

Code	Termination Type
Р	Non-magnetic Copper
	Plated 100% Sn(RoHS)


◆ Rated Capacitance Range Table

								0																
	Size		_	0603	_	_		08	05			1206							1210					
cap	code	25V	50V	100V	200V	250V	50V	100V	200V	250V	50V	100V	200V	250V	500V	1000V	2000V	50V	100V	200V	250V	500V	1000V	2000V
330pF	331																							
470pF	471																							
680pF	681																							
1nF	102																							
1.5nF	152																							
2.2nF																								
3.3nF																								
4.7nF																								
6.8nF																								
10nF	103																							
15nF																								
22nF																								
33nF	333																							
47nF																								
68nF																								
0.1uF																								
0.15uF																								
0.22nF																								
0.33nF																								
0.47uF																								
0.68uF																								
1uF	105																							


◆ Tape & Reel Specifications

Orientation	EIA	A0	B0	K0	w	P0	P1	Т	F	MIN /REEL	QTY/ REEL	TAPE MATERIAL
Horizontal	0603	1.05	1.80	0.90	8.00	4.00	4.00	0.90	3.50	1000	4000	Paper
Horizontal	0805	1.40	2.20	1.20	8.00	4.00	4.00	0.22	3.50	1000	3000	Plastic
Horizontal	1206	1.91	3.51	1.30	8.00	4.00	4.00	0.25	3.50	1000	3000	Plastic
Horizontal	1210	2.85	3.50	1.95	8.00	4.00	4.00	0.25	3.50	1000	3000	Plastic

Characteristics Curve

Capacitance Change vs Aging

--101--

• Specifications and Test Methods

NO.	Item	Specification	Test Method					
1	Operating Temperature Range	-55 °C ~ +125 °C						
2	Rated Voltage	See pages 73	The rated voltage means the maximum direct voltage or peak value of pulse voltage which may be applied continuously to a capacitor					
3	Appearance	No defects or abnormality	Visual inspection					
4	Dimensions	See the previous pages	Callipers inspection					
5	Dielectric Strength	No defects or abnormality	No failure shall be observed when the given coefficient of the ratedvoltage is applied betweentheterminationsfor1toS seconds, provided the charge/discharge current is less than 50mA.					
6	Insulation Resistance	More than $100 M\Omega \cdot uF$	The insulation resistance shall be measured with the testing voltage at normal temperature and with humidity, within 2 minute of charging.					
7	Capacitance	Within the specified tolerance	The capacitance D.F. shall be measured at 25 °C with the frequency and voltage shown in the table.					
8	Dissipation Factor (D.F.)	D.F≤ 5%	FrequencyVoltageX7R1±0.1KHz1±0.2Vrms					
9	Temperature Coefficient	± 15%	Refer to the test methods of general ceramic Chip capacitors.					
10	Adhesive strength of Termination	No removal of the terminations or other defect shall occur	Solder a capacitor to test jig (glass epoxy board) shown in fig below using a eutectic solder, then apply 10N force in the direction of the arrow. The soldering should be done either by hand iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock. INNewton Glass Epoxy Resin Board					

♦ Specifications and Test Methods

NO.	It	em	Specification	Test Method
		Appearance	No defect or abnormality	Solder the capacitor to test jig (glass epoxy board) shown in fig below. Soldering should be done either by hand iron of using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock. The capacitor shall be subjected to a simple harmonic
11	Vibration Resistance	Capacitance	Within the specified tolerance	motion having a total amplitude of 1.5mm. The frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total 6 hours)
		D.F.	D.F≤5%	Glass Epoxy Board
	12 Deflection		No cracking or marking defects shall occur, $\Delta C/C < 12.5\%$	Solder the capacitor to test jig (glass epoxy board) direction shown in below fig.
12			20 50 Pressurizing speed 1.0mm/sec. Pressurize R230_R340 Flexure : ≤1 Capacitance meter 45 45	b 04.5 i 0
13	Solderability of Termination		More than 75% of the terminations is to be soldered evenly and continuously.	Immerse the capacitor first in a ethanol solution of rosin. Preheat at 80 °C to 120 °C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2 ± 0.5 seconds at 250 ± 5 °C.
		Appearance	No marking defects	
14	Resistance to	Range		Preheat capacitor at 120 °C to 200 °C for 1 minute. Then immerse the capacitor in a eutectic solder at 260 °C to 265 °C
14	Soldering Heat	D.F.	D.F≤5%	for 10 ± 1 seconds, Set it for 24 ± 2 hours at room temperature, then measure.
		Insulation Resistance	I.R: More than $100 M\Omega \cdot uF$	

♦ Specifications and Test Methods

NO.	Ite	em	Specification	Test Method			
		Appearance	No marking defects	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (11). Perform the five cycles according to the four heat treatments			
	15 Temperature Cycle	Capacitance Range	≤7.5%	listed in the following table. Set it for 24 ± 2 hours at room temperature.			
15		D.F	D.F≤5%	StepTemperature(°C)Time(minutes)1Min.operating temp3 to 0 30 ± 3 2Room temperature $2to3$ 3Max.operating temp3 to 0 30 ± 3			
		Insulation Resistance	More than $100 M\Omega \cdot uF$	3Max.operating temp3 to 0 30 ± 3 4Room temperature $2to3$			
		Appearance	No defect or abnormality				
16	Humidity	Capacitance Range	≤12.%	Sit the capacitor at 40 \pm 2 °C and 90% to 95% humidity for			
	Steady State	D.F	D.F≤5%	500 ± 12 hours.temperature, then measure.			
		Insulation Resistance	More than $50M\Omega \cdot uF$				
		Appearance	No marking defects				
	High	Capacitance Range ≤12.5%		Apply a DC voltage of 150% of the rated voltage for 1000 hours at the maximun operating temperature, and set it for 48			
17	Temperature Load	D.F	D.F≤5%	hours at room temperature, then measure.			
		Insulation Resistance	More than $50 M\Omega \cdot uF$	The charge/discharge current is less than 50mA.			

Laser Marking

Most of Passive Plus products are identified by laser marking technology. Generally it can be visually observed. Under normal storage and application, the marking will not disappear.

Passive Plus applies different kinds of laser marking methods on different sizes of capacitors. See the below tables for detail.

Capacitor Series	1111C/1111P	2225C/2225P	3838C/3838P
Example	D102	DLC222 3A	DLC561 39
Meaning	102:1000pF	222:2200pF 3A: capacitor identification code	561:560pF 39: Capacitor identification code

Capacitor Series	6040C	7676C
Example	DLC70F 39 560pF ± 5% 3KV	DLC70G 3P 100pF ± 5% 8KV
Meaning	Capacitance:560pF Tolerance:±5% WVDC:3000V 39: Capacitor identification code	Capacitance:100pF Tolerance:±5% WVDC:8000V 3P: Capacitor identification code

If the customer needs a special laser marking, please contact Passive Plus directly.

Custom and Engineering Design Kits

Standard Design Kits

Standard Design Kits

According to the customer's demand, PPI can provide many kinds of tool kits for engineers to design and debug the circuit. All of our products satisfy the requirement of RoHS instruction.

PPI also offers kits for Non-Magnetic MRI applications. Engineering design kits are also available in multiple sizes as well. All kits are RoHS Compliant

♦ High-Q Capacitor Design Kits

Design Kit	Description	Values	No. of Values	Tolerances
DKD0505C01	0.1pF- 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5pF	- 16	+/- 0.1pF
DKD0505P01	0.1pr-2.0pr	1.6, 1.8, 2.0pF	10	+/- 0.25pF
DKD0505C02		1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7pF,		+/- 0.1pF
DKD0505C02 DKD0505P02	1.0pF - 10pF	3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF	16	+/- 0.25pF
		10pF		+/- 5%
DKD0505C03	10pF – 100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33pF	16	. / 50/
DKD0505P03	10рг – 100рг	39, 47, 56, 68, 82, 100pF	10	+/- 5%
DKD0505C04	100pF- 1000pF	100, 120, 150, 180, 200, 220, 240, 270, 300, 330pF	16	+/- 5%
DKD0303C04		390, 470, 560, 680, 820, 1000pF	10	T/- J /0
DKD0505C05	0.1pF- 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5pF	16	+/- 0.1pF
DKD0505P05	Non-Magnetic	1.6, 1.8, 2.0pF		+/- 0.25pF
DKD0505C06	1.0pF - 10pF	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7pF		+/- 0.1pF
DKD0505C00 DKD0505P06	Non-Magnetic	3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF,	16	+/- 0.25pF
		10pF		+/- 5%
DKD0505C07	10pF – 100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33pF	16	. (. 50(
DKD0505P07	Non-Magnetic	39, 47, 56, 68, 82, 100pF	16	+/- 5%
DKD0505000	100pF- 1000pF	100, 120, 150, 180, 200, 220, 240, 270, 300, 330pF	16	. (. 50(
DKD0505C08	Non-Magnetic	390. 470, 560, 680, 820, 1000pF	16	+/- 5%

• High-Q Capacitor Design Kits

Design Kit	Description	Values (pF)	No. of values	Toler- ances
		1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, pF		$\pm 0.1 \mathrm{pF}$
DKD1111C01 DKD1111P01	1.0pF - 10pF	3.0,3.3,3.9, 4.7, 5.6, 6.8, 8.2pF	16	± 0.25pF
		10pF		± 5%
DKD1111C02 DKD1111P02	10pF -100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	16	± 5%
DKD1111C03 DKD1111P03	100pF-1000pF	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820,1000 pF	16	± 5%
DKD1111C04 DKD1111P04	1000pF-10000pF	1000, 1100, 1200, 1500, 1800, 2200, 2700, 3000, 3300, 3900, 4700, 5100, 5600, 10000 pF	14	± 5%
		1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, pF		$\pm 0.1 \mathrm{pF}$
DKD1111C05 DKD1111P05	1.0pF - 10pF Non-magnetic	3.0,3.3,3.9, 4.7, 5.6, 6.8, 8.2pF	16	± 0.25pF
		10pF		\pm 5%
DKD1111C06 DKD1111P06	10pF - 100pF Non-magnetic	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	16	± 5%
DKD1111C07 DKD1111P07	100pF- 1000pF Non-magnetic	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820,1000 pF	16	± 5%
DKD1111C08 DKD1111P08	1000pF- 10000pF Non-magnetic	1000, 1100, 1200, 1500, 1800, 2200, 2700, 3000, 3300, 3900, 4700, 5100, 5600, 10000 pF	14	\pm 5%

Standard Design Kits

• EIA Low ESR Design Kits

Design Kit	Description	Values	No. of Values	Tolerance
DKD0201N01	0201N .1pF - 2.0pF	0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0, 1.3, 1.5, 1.7, 1.9, 2.0pF	13	+/1pF
DKD0301N03	0201N 1 0-E 10-E	1.0, 1.3, 1.5, 1.7, 1.9, 2.0, 2.2, 2.7, 3.0, 3.9, 4.7, 5.6, 6.8, 7.5, 8.2pF,		+/.1pF
DKD0201N02	0201N 1.0pF - 10pF	10pF	16	+/-5%
DKD0201N03	0201N 10 - 100pF	10, 13, 15, 18, 20, 22, 27, 30, 39, 47, 56, 68, 75, 82, 91, 100pF	16	+/-5%
DKD0402N01	0402N .1pF - 2.0pF	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.6, 1.8, 2.0pF	15	+/1pF
DKD0402N02	0402N 1.0pF - 10pF	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF,	16	+/1pF
DKD0402IN02	0402N 1.0pr - 10pr	10pF	10	+/-5%
DKD0402N03	0402N 10pF - 33pF 10 12, 13, 15, 16. 18, 20, 22, 24, 27, 30, 33pF		12	+/-5%
DKD0603N01	0603N .1pF - 2.0pF 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5, 1.6, 1.8, 2.0pF		16	+/1pF
DUDOCODIO		1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF,		+/1pF
DKD0603N02	0603N 1.0pF - 10pF	10pF	16	+/-5%
DKD0603N03	0603N 10pF - 100pF 10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF		16	+/-5%
DKD0805N01	0805N .1pF - 2.0pF	0805N .1pF - 2.0pF 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.6, 1.8, 2.0pF		+/1pF
DUDOOCTIO		1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2pF,		+/1pF
DKD0805N02	0805N 1.0pF - 10pF	10pF	16	+/-5%
DKD0805N03	0805N 10pF - 100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	16	+/-5%
DKD0805N04	0805N 10pF - 220pF	10, 15, 18, 20, 24, 27, 30, 39, 47, 56, 68, 82, 100, 120, 150, 180, 220pF	17	+/-5%
Design Kit	Description	Values (pF)	# of values	Tolerance
		0.2, 0.5, 0.7, 0.8, 1.0, 1.2, 1.5, 1.8, 2.0, 2.4, 2.7, 3.0, 3.3,		
DKD1111N01	1111N 0.2pF - 10pF	3.9, 4.7, 5.6, 6.8, 8.2pF,	19	+/1pF
		10pF	 	+/-5%
DKD1111N02	1111N 10-100pF	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF	16	+/-5%
DKD1111N03	1111N 100-1000pF	100, 120, 150, 180, 200, 220, 240, 270, 300, 390, 470,	15	+/-5%
		560, 680, 820, 1000pF		

• Engineer Adjustment Stick Kits

Adjustment Stick Kits for engineers for their in-circuit tuning prove to be valuable tools for the engineer enabling them to precisely tune a circuit board without running the risk of damaging the board while changing out capacitors. Now, engineers can "tweak" their boards using these adjustment sticks to determine the better values needed for their projects.

Design Kit	Range (pF)	Capacitance (pF)	Values	Tolerance
TSD0505C01	.1 - 2.0	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5, 1.6, 1.8, 2.0	16	±.1 ±.25
TSD0505C02	1.0 - 10	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2 10	- 16	±.25 ±5%
TSD0505C03	10 - 100	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100	16	± 5%
TSD0505C04	100 - 1000	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820, 1000	16	± 5%

Series: 0505C - (.055 x .055) Traditional High-Q Low ESR (NPO TC)

Series: 1111C - (.110 x .110) Traditional High-Q Low ESR (NPO TC)

Design Kit Range (pF)		Capacitance (pF)	Values	Tolerance	
TSD1111C01	0.1 - 1.0	0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 & 1.0	- 10	±.1 ±.25	
TSD1111C02	1.0 - 10	1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2 10	- 16	±.25 ±5%	
TSD1111C03	10 - 100	10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82 & 100	16	± 5%	
TSD1111C04	100 - 1000	100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820, 1000	16	± 5%	

Series: 2225C - (.220 x .250) Traditional High-Q Low ESR (NPO TC)

Design Kit	Range (pF)	Capacitance (pF)	Values	Tolerance
		1.0, 1.5, 2.2, 3.3,	-	± .1
TSD2225C01	1.0 - 100	4.7, 5.6, 6.8, 8.2,	<u></u>	± .25
		10, 15, 22, 33, 47, 56, 68, 82 & 100	17	± 5%
TSD2225C02	100 - 2700	100, 150, 220, 330, 470, 560, 680, 820, 1000, 1500, 2200, 2700	12	± 5%

Values in the TSD0505C kits have a 150V.

Values in the TSD1111C kits have a 500V.

Voltages for the values in the TSD2225C kits will vary depending on value.

Custom Kits

Custom Kits

According to the customer's demand, PPI can provide many kinds of tool kits for engineers to design and debug the circuit. All of our products satisfy the requirement of RoHS instruction.

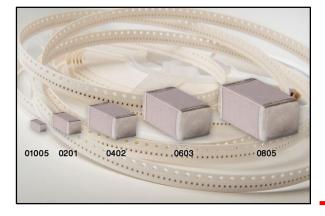
Passive Plus will develop a custom kit using the engineer's specific requirements for the engineer's projects (case size, temperature coefficient, value range, tolerances, voltages, and quantities per value). Once these requirements are determined, PPI will then provide customer with a price. Please contact PPI directly to start this process.

All kits are RoHS Compliant.

	4			and service and service	eren die teten. Soper	
F	0.356 - 0.366 LILLINGERENDIN	L. Ager - D. Syst Littlader Hannier	0.624 - 394 11.154mart (5115	Start - Start Litterarenter	Lop# 1.10F 11(181-8108-8009	1.347 - 1.495 H.DINNERMARIN
	1.5pd = 1.7pd (1)344 minutesia	3. April - 2. April Lini i Marsovansia	1.1pt - 3.Aut Teleformetica	2.396-3.58 11.100 (0100011)	Liner - Aller Catelinanesistes	2.707 - 5.600 1.1209 - 5.600
	6.3ge 7.5ge	S Zari - 2004 III. van 2005 Ville	11st - 15st militar provinces	Linet - Higer sciencesements	2545 - 2467 33114229448594	23pr - Mar Inconservation
	Mart - Old	Etpi-Stef gittersowner	Kippi - 79pi Si 200-anarititis	A244 - 100pr	1004-1204 Diskinoomi	EDept - 1880/ Listersseamers
	2000/ - 24004 (1276-2001-00178	23 June - 33004 Listenerssandere	300pt - 4250pt Little accounting	COMI - SHOP Interviewer	ADDAT (YANA)	ROOP - LOOPer Latt Made allowing

Custom Kits

Custom Kits



Product Overview

Passive Plus, Inc. (PPI) has developed a series of Broadband Capacitors available in 5 different case sizes; 01005BB, 0201BB, 0402BB, 0603BB and the 0805BB. Values available are 10nF (103) and 100nF (104)

These capacitors are intended primarily for coupling RF signals or, occasionally, for bypassing them to ground, while blocking DC. The applications for which they are intended require small, surface-mountable devices that provide low RF impedances, i.e., low insertion losses and reflections, across extremely large RF bandwidths and temperatures typically ranging from -55 to $+125^{\circ}$ C.

Small, single layer capacitors, apart from not being surface-mountable, usually do not have sufficiently large capacitance values to cover the required frequency range, which may extend from the tens or hundreds of kilo-hertz to tens of gigahertz. Ordinary multi-layer capacitors, when operated over these ranges, display "parallel resonances," narrow frequency bands over which they have high impedances and insertion losses. The Passive Plus "BB" series overcomes these objections to achieve bandwidths as high as -- in the case of the 0201BB104 -- a remarkable 16 kHz to >40 GHz, Insertion Loss <1db, with a WVDC of 16V.

Applications for the Broadband series are primarily found in the so -called "signal integrity" market:

- Optoelectronics/high-speed data
- ROSA/TOSA (Transmit/Receive optical subassemblies)
- SONET(Synchronous Optical Networks)
- Broadband test equipment
- Broadband microwave and millimeter wave amplifiers and oscillators

In general, best results are achieved by capacitors that are close in width to that of the transmission line trace. Most trace widths on commonly used substrates that must function well above 12 GHz lie in the 8- to 24-mil range, and so 0402 and 0201 SMT devices are well suited to the applications.

To reiterate, customers requiring surface-mountable, 10 nF or 100 nF capacitors that provide resonance-free, low insertion loss, low reflection operation over extremely large RF bandwidths will be well served by Passive Plus's Broadband series.

For the most current Broadband Capacitors Data sheets, please visit our website http://www.passiveplus.com/broadbandcap.php

01005BB (.010" x .005") 100nF

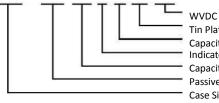
Product Features

- Typical operating frequency range: 16 KHz (- 3 dB point) to > 67 GHz;
- Insertion Loss: < 1 db, typical; 4 WVDC;
- Available in 40K pcs/ reel; Lower quantities available in cut tape

♦ Electrical Specifications

- Capacitance: 100 nF, nom.
- Operating Temperature Range: _55 C to +85 C
- Temperature Coefficient of Capacitance (TCC):
 - $(\pm 15\%, 55C \text{ to } +85C)$
- Rated Voltage: 4 WVDC
- Dielectric Withstanding Voltage (DWV): 250% of rated WVDC for 5 secs.
- Insulation Resistance: $10^{11}\Omega$ min. @ +25C @ rated WVDC

Mechanical Dimensions


L = 0.016 in. ± 0.001 in. (0.4 mm ± 0.02 mm) W = 0.008 in. ± 0.001 in. (0.2mm ± 0.02 mm) T = 0.008 in. ± 0.001 in. (0.2mm ± 0.02 mm) S = 0.005 in., min. (0.13 mm, min.)

Test Conditions

Typical responses for sample placed across a 0.127 mm (5.0 mil) gap between 0.29 mm (11.4 mil) wide, 0.21 mm (8.3 mil) long mounting pads on 4-mil Rogers RO4350B. Measured and modeled data are de-embedded to the mounting pad edges using TRL calibration procedures.


Part Numbering 01005 BB 104 M W 4R0

Tin Plated over Nickel Barrier (RoHS) Compliant Capacitance Tolerance (M tolerance = $\pm 20\%$) Indicates number of zeros following digits of capacitance in pF Capacitance Code – First 2 significant digits for capacitance Passive Plus Series Case Size

Performance Curves – Insertion and Return Loss Charts

0201BB (.020" x .010")

0201BB (.020" x .010") 100nF

Product Features

Typical operating frequency range: 16 KHz (- 3 dB point) to > 40 **GHz;** Insertion Loss: < 1 db, typical; 16 WVDC; Available in Tin or Gold Terminations; 15K pcs/reels; lower quantities in cut tape; also available in Waffle Packs

> -2 ∔ 0

Electrical Specifications

- Capacitance: 100nF
- Operating Temperature Range: _55°C to +125°C
- Temperature Coefficient of Capacitance (TCC):
 - $\pm 15\%$ (_55°C to +125°C)
- Rated Voltage: 16 WVDC
- Dielectric Withstanding Voltage (DWV): 250% of rated WVDC for 5 secs.
- Insulation Resistance:

 $10^{11}\Omega$ min. @ $+25^{\circ}$ C @ rated WVDC

Mechanical Dimensions

- L = 0.023 in. ± 0.001 in. (0.58mm ± 0.03 mm)
- W = 0.012 in. ± 0.001 in. (0.3mm ± 0.03 mm)
- T = 0.0118 in. MAX. (0.3mm)
- $S\ = 0.0078$ in. MIN. (0.2mm MIN.)

Test Conditions

Typical responses for sample placed across a 3-mils gap in a 12.5-mil-wide trace, pad length 8.5 mils on 6.6mil RO4350B.

Measurements de-embedded to sample edges using TRL calibration procedures.

Modeling Data

• S-Parameters available on PPI website (http://www.passiveplus.com/designsupp.php).

• Full models also available on Modelithics website at

http://www.modelithics.com/mvp/PassivePlus/

Part Numbering

20

Frequency (GHz)

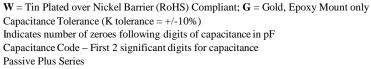
15

25

30

35

40


Performance Curves --

Insertion and Return Loss Charts

#Modelithics

Case Size

10

0201BB (.020" x .010")

0201BB (.020" x .010") 10nF

Product Features

Typical operating frequency range: 160 KHz (- 3 dB point) to > 32 GHz; Insertion Loss: < 1 db, typical; 25 WVDC; Available in Tin or Gold Terminations; 15K pcs/reels; lower quantities in cut tape; also available in Waffle Packs

Electrical Specifications

- Capacitance: 10nF
- Operating Temperature Range: 55°C to +125°C
- Temperature Coefficient of Capacitance (TCC):
 - ±15% (_55°C to +125°C)
- Rated Voltage: 25 WVDC
- Dielectric Withstanding Voltage (DWV): 250% of rated WVDC for 5 secs.
- Insulation Resistance:

10^11Ω min. @ +25°C @ rated WVDC

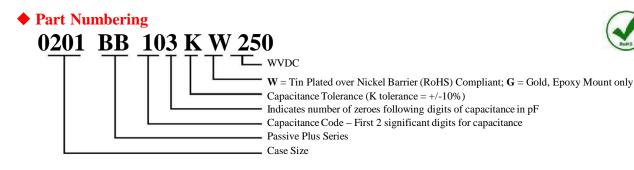
Mechanical Dimensions

L = 0.023 in. ± 0.001 in. (0.58mm ± 0.03 mm)

- W = 0.012 in. ± 0.001 in. (0.3mm ± 0.03 mm)
- T = 0.0118 in. MAX. (0.3mm)
- S = 0.0078 in. MIN. (0.2mm MIN.)

Test Conditions

Typical responses for sample placed across a 3-mils gap in a 12.5-mil-wide trace, pad length 8.5 mils on 6.6mil RO4350B.


Measurements de-embedded to sample edges using TRL calibration procedures.

Modeling Data

• S-Parameters available on PPI website (http://www.passiveplus.com/designsupp.php).

· Full models also available on Modelithics website at

http://www.modelithics.com/mvp/PassivePlus/

Performance Curves --Insertion and Return Loss Charts

0402 (.040" x .020")

0402BB (.040" x .020") 100nF

Product Features

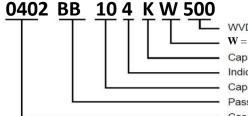
- Typical operating frequency range:16 KHz (-3 dB point) to 50 GHz;
- Insertion Loss: < 1.2 db, typical; **50 WVDC**;
- Available in Tin and Gold Terminations
- •10K pcs/reel; Lower quantities available in cut tape

Electrical Specifications

- Capacitance: 100 nF
- Operating Temperature Range: _55 C to +125 C
- Temperature Coefficient of Capacitance (TCC): ±15% (_55 C to +125 C)
- Rated Voltage: 50 WVDC
- Dielectric Withstanding Voltage (DWV): 250% of rated WVDC for 5 secs.
- Insulation Resistance: 10^11Ω min. @ +25 C @ rated WVDC

Mechanical Dimensions

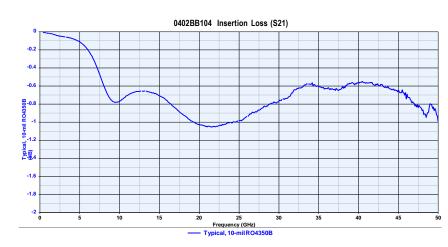
L = 0.040 in. ± 0.004 in. (1.016mm ± 0.102 mm) W = 0.020 in. ± 0.004 in. (0.508 mm ± 0.102 mm) T = 0.024 in. MAX. (0.610 mm MAX.)


S = 0.016 in. MIN. (0.406 mm MIN.)

Electrical Specifications

Typical responses for sample places across a 15.5 mil gap in a 21-mil-wide trace, pad length 12.3 mils on 10-mil RO43508.

Measurements de-embedded to sample edge using TRL calibration procedures.


Part Numbering

WVDC

W = Tin Plated over Nickel Barrier (RoHS) Compliant; G = Gold, Epoxy Mount only
 Capacitance Tolerance (K tolerance = ±10%)
 Indicates number of zeros following digits of capacitance in pF
 Capacitance Code - First 2 significant digits for capacitance
 Passive Plus Series
 Case Size

Performance Curves –

Insertion and Return Loss Charts

(And S

Passive Plus Inc. RF & Microwave Capacitors

0402BB (.040" x .020") 10nF

Product Features

- Typical operating frequency range: 160 KHz (- 3 dB point) to 40 GHz;
- Insertion Loss: < 1 db, typical; 50WVDC;
- Available in 10K pcs/ reel; lower quantities available in cut tape.

• Electrical Specifications

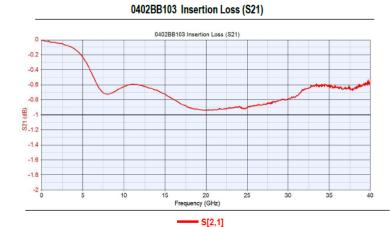
- Capacitance: 10 nF.
- Operating Temperature Range: -55°C to +125 °C
- Temperature Coefficient of Capacitance TCC: ±15% (-55°C to +125 °C)
- Rated Voltage: 50 WVDC
- Dielectric Withstanding Voltage (DWV): 250% of rated WVDC for 5 secs.
- Insulation Resistance: $10^{11}\Omega \text{ min.} @ +25^{\circ}C @ \text{ rated WVDC}$

Mechanical Dimensions

L = 0.040 in. ± 0.004 in. (1.016mm ± 0.102 mm)

- W = 0.020 in. \pm 0.004 in. (0.508 mm \pm 0.102 mm)
- T = 0.024 in. MAX. (0.610 mm MAX.)
- S = 0.016 in. MIN. (0.406 mm MIN.)

Test Conditions


Typical responses for sample placed across a 10mil-thick Rogers 4350B microstrip board, sample spanning a 15.5-mil gap in the 20-mil-wide center trace. All measurements made using TRL deembedding procedures.

Part Numbering

0402 BB 10 3 K W 500

Performance Curves – Insertion and Return Loss Charts

#Modelithics

WVDC

Tin Plated over Nickel Barrier (RoHS) Compliant Capacitance Tolerance (K tolerance = ±10%) Indicates number of zeros following digits of capacitance in pF Capacitance Code - First 2 significant digits for capacitance Passive Plus Series Case Size

Broadband Capacitors

0402 (.040" x .020")

0805BB (.080" x .050")

0805BB (.080" x .050") 10nF

Product Features

Typical operating frequency range: 160 KHz (- 3 dB point) to > 3 **GHz;** Insertion Loss: < 0.25db, typical; 100 WVDC; Available in Tin Termination

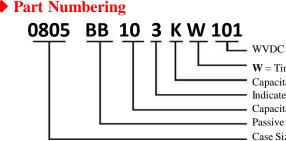
• Electrical Specifications

- Capacitance: 10nF
- Operating Temperature Range: 55°C to +125°C
- Temperature Coefficient of Capacitance (TCC):
 - $\pm 15\%$ (_55°C to +125°C)
- Rated Voltage: 100 WVDC
- Dielectric Withstanding Voltage (DWV): 250% of rated WVDC for 5 secs.
- Insulation Resistance:

10^11Ω min. @ +25°C @ rated WVDC

Mechanical Dimensions

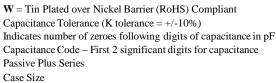
- L = 0.080in. ± 0.006 in. (2.03mm ± 0.15 mm)
- W = 0.050 in. ± 0.006 in. (1.27mm ± 0.15 mm)
- T = 0.040 in. MAX. (1.02mm)
- S = 0.044 in. MIN. (1.12mm)


Test Conditions

trace on 20-mil Rogers 4003C.

Typical responses for a horizontally oriented sample (electrodes parallel to plane of substrate) placed across a 25.5-mil gap in a 42.5-mil-wide

Measurements are de-embedded to sample edge using TRL calibration procedures.



Performance Curves - Insertion and Return Loss Charts

#Modelithics

Application Note: Broadband Capacitors

Introduction

There are a number of circuits that require coupling RF signals or bypassing them to ground while blocking DC over extraordinarily large RF bandwidths. The applications for which they are intended typically require small, surface-mountable (SMT) units with low insertion losses, reflections, and impedances across RF frequencies extending from the tens of KHz to the tens of GHz, and temperatures typically ranging from -55 to +85 $^{\circ}$ C. This note focuses on a particular implementation of these devices -- multilayer ceramic capacitors (MLCCs) – and how to obtain the best performance when they're used on various substrates.

Broadband capacitors are used in the "signal integrity" market -- optoelectronics/high-speed data; ROSA/TOSA (Transmit/Receive optical subassemblies); SONET(Synchronous Optical Networks); broadband test equipment – as well as in broadband microwave and millimeter wave amplifiers (MMICs, GaN transistors) and oscillators. The basic requirement in the former is to produce an output waveform that closely replicates an input waveform, typically a train of digital pulses, as shown in **Fig. 1**.

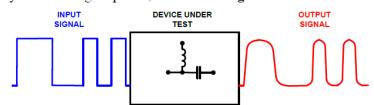


Fig. 1 "Signal Integrity" - output replication of input

While RF and microwave devices are typically measured in the frequency domain, digital systems are usually characterized in the time domain, and so it is necessary to make a connection between the two (**Fig. 2**).

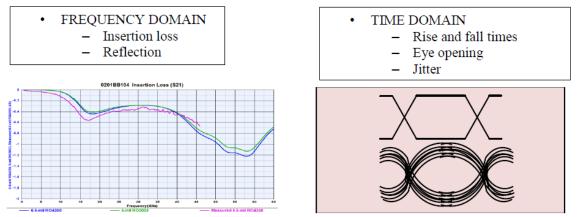
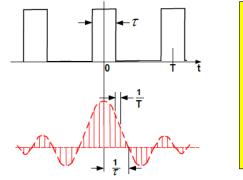



Fig. 2 Frequency domain and time domain parameters

Fortunately, all electrical engineers are familiar with the Fourier and Laplace transforms that do precisely that. The low-frequency and high-frequency responses required to reproduce a train of rectangular pulses with reasonable fidelity are shown in **Fig. 3**.

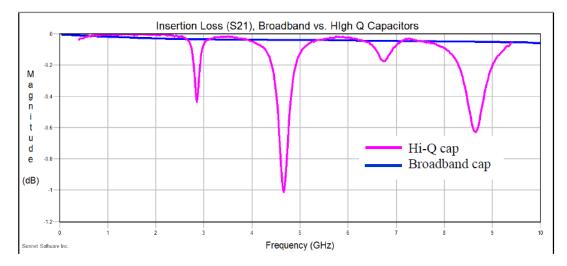

Rules of thumb:If F_L is the lowest frequency needed toreproduce the longest pulse (string of
"ones"), $F_L \approx 1/T$ If $R \equiv$ pulse rate in GB/sec, and F_H is
the upper frequency needed to
reproduce pulses, $F_H(GHz) \approx (R/2)*5$

Fig. 3 "Rules of thumb" for reproducing a rectangular pulse train

In general, systems that transmit all frequencies with equal velocity and minimal attenuation and reflection, will accurately reproduce input signal waveforms at their outputs. Conversely, systems that are dispersive, i.e., where signals at different frequencies travel at different speeds or have unequal attenuations or reflections, create distortions in the output waveform.

Broadband Capacitors

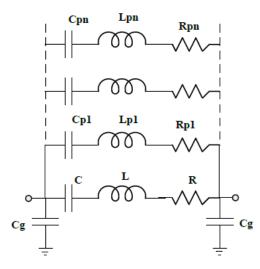
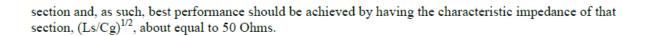
In considering "broadband capacitors," perhaps the first question that arises is precisely what distinguishes these devices from any other capacitors. One property is alluded to above: When used to RF couple/DC block, the capacitor should have minimal attenuation and reflection. **Fig. 4** compares the insertion loss vs. frequency plot of a typical high-Q ceramic microwave capacitor with that of a broadband capacitor.

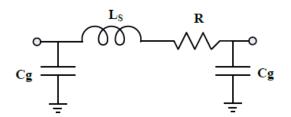
Fig. 4 Insertion loss of a broadband capacitor compared to that of a high-Q capacitor

The salient feature of the plots is that the high-Q capacitor exhibits a number of "parallel resonances" that create regions of high insertion loss, which is not the case with the broadband device.

A Lumped-Element Electrical Model

To understand the electrical behavior of an MLCC, one place to begin is with an equivalent circuit that produces the same performance, including interaction with a microstrip or coplanar waveguide transmission line. One such circuit, using lumped elements, is shown in **Fig. 5**.

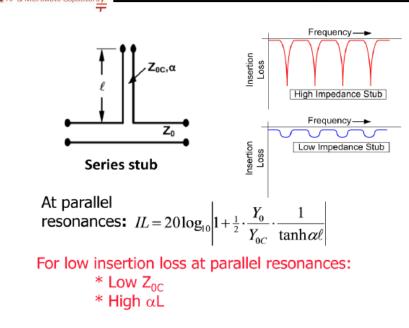

Fig. 5 A lumped element equivalent circuit for an MLCC on microstrip

If we consider a reduction of this circuit to only the first (lowest order) branch, Cg can be considered to represent capacitance of the MLCC body to the groundplane; C, the capacitor's value; L, its net inductance in the presence of the groundplane; and R, the equivalent series resistance (ESR). Note that to more closely reflect actual performance, L and R are both frequency varying to accommodate skin and proximity effects.

The addition of a second branch consisting of another inductor, Lp1, in series with another capacitor, Cp1, and resistor, Rp1, enables modeling the lowest-frequency parallel resonance; addition of additional Lpn-Cpn-Rpn branches capture higher-order parallel resonances. There are, however, constraints on these higher order element values beyond yielding the correct resonant frequencies, e.g., the model's low-frequency capacitance value (all inductive reactances negligible) must equal the true low-frequency value of the device and the high-frequency inductance value (all capacitive reactances negligible) must also equal that of the device.

Both broadband and high-Q MLCCs have the same physical structure: interleaved metallic electrodes embedded in a ceramic brick. From whence, then, comes the difference in behavior? Examination of Figs. 4 and 5 suggests at least one answer: The broadband capacitor is lossy. Specifically, in Fig. 5, resistances Rp1 through Rpn, must be high enough that only exceedingly low-Q parallel resonances are created when their reactances are capacitive and those of the lower branches are inductive. If this is the case, then at frequencies high enough that the reactance of C is negligible compared to that of L, the circuit reduces to the simple one in **Fig. 6**. It may be observed that this is a lumped element (low-pass filter) approximation of a transmission line

Fig. 6 Simplified lumped-element high-frequency equivalent circuit for microstrip-mounted MLCC with very low-Q parallel resonances


While lumped-element models are quite flexible, particularly where element values can incorporate arbitrary variation with frequency, there is at least one reason to be wary in applying them to broadband capacitors: The models are <u>ad hoc</u>, heuristic representations, derived from a combination of experimental observations and "common sense" circuit theory (there must be some series inductance, there must be some shunt capacitance to ground, etcetera), rather than more fundamental principles. Nowhere is this clearer than in the addition of the Lp-Cp branches to create parallel resonances. As lumped elements, they have no obvious physical origin and are attached <u>ad hoc</u> purely to simulate observed electrical manifestations.

We should, in fact, be cautious about any lumped-element representation of capacitors that operate at sufficiently high frequencies – but let's consider where "sufficiently high" might begin. Typical X7R dielectrics for these devices have relative dielectric constants in the 2500 – 3000 range. This implies quarter wavelengths on the order of 60 mils or less at 1 GHz. Thus, an 0402 device of length 40 mils would reach a quarter wavelength at 1.5 GHz; a 20-mil-long 0201 device would reach a quarter wavelength at 3 GHz. It therefore seems evident that, to characterize these devices to 50 GHz and beyond, we'd really like a distributed model.

Distributed Electrical Models

Passive Plus Inc.

Fig. 7 depicts how an idealized, lossy, open-circuit series stub can function as a broadband coupling device. Note the resolution of the apparent paradox: How can the stub itself be quite lossy and yet have only minimal effect on the main line? The answer is that as long as the stub characteristic impedance is low relative to the main line characteristic impedance, the main line insertion loss will also be low. In fact, if the stub loss is sufficiently gradual and large, the stub input impedance will approach its characteristic impedance.

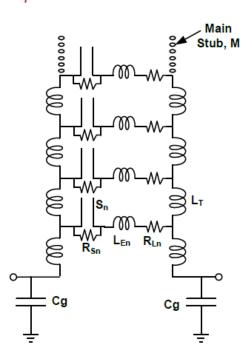


Fig. 7 How to make a broadband series coupling stub

Passive Plus Inc

Turning now to distributed capacitor models, one such was proposed many years ago by Gordon Kent and Mark Engels [1], [2]. Using a procedure involving "unfolding" the interleaved electrode structure of the capacitor, they arrived at an equivalent section of open-circuited parallel-plate transmission line that exhibited periodic series and parallel resonances. This model had, however, a number of drawbacks: (1) It considered a capacitor only in isolation, not including interaction with the substrate it was mounted on; (2) it did not account for the fact that observed parallel resonances do not occur at uniformly spaced frequencies (again, <u>ad hoc</u> reactances or line sections were added in an attempt to model the latter behavior); and (3) it required the currents in each electrode to flow in opposite directions on each surface, something impossible at frequencies below those where significant skin effect occurs – and yet where parallel resonances are nevertheless observed.

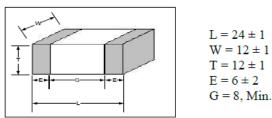
Alternative distributed models consider the Lpn-Cpn-Rpn branch circuits of Fig. 5 as the capacitances, inductances, and resistances of individual overlapping electrode pairs, all loading an open-circuited parallelplate stub transmission line formed by the MLCC terminations. **Fig. 8** is an example of one such model. In this case, the interleaved electrodes also have quasi-distributed representations (open circuit stubs instead of lumped capacitors) in accordance with models of metal-insulator-metal (MIM) capacitors [3]. Referring back to our discussion of open-circuited series stubs, it may be observed that **if** the characteristic stub impedance ZO_M is << 50 Ohms, the internal distributed losses can be large and yet the overall insertion loss as a series-connected device will be low. (The impedance at the input to stub M will simply approach a ZO_M -Ohm resistor.) Therefore, another part of making a capacitor broadband is reducing L_T and L_{En} as much as possible, while maintaining high capacitance.

Fig. 8 A distributed MLCC model

Passive Plus Inc.

Unfortunately, neither lumped nor distributed theoretical models are able to capture the full range of real-world complexity: the presence of three different dielectrics (capacitor, air, substrate) and consequent TEM propagation modes [4], [5]; the mutual inductance and resistance effects of the electrodes; the discontinuity reactances of the microstrip-to-MLCC transitions (including solder joints); mounting pad dimensions that exceed those of the device's termination footprints; higher (non-TEM) mode generation; radiation; etc.

However, there is a combined experimental/theoretical approach, e.g., [6], that does yield good agreement with real-world behavior: It is that taken by Modelithics, Inc., a vendor that creates electrical models based on extensive (soldered on) device measurements performed on a variety of substrates having different dielectric constants, thicknesses, and pad dimensions. PPI has commissioned Modelithics to measure and model a number of its broadband capacitors; in the following section, by investigating the behavior of one such model under several different conditions, we can arrive at some fundamental conclusions on how to achieve good performance.

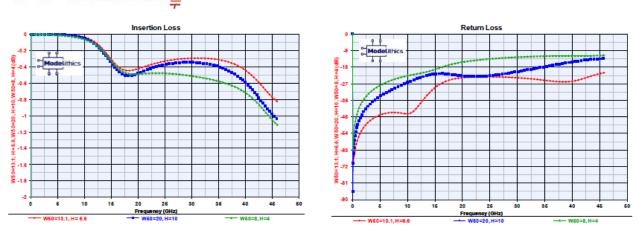

Optimizing Performance as a Coupling/Blocking Device

We will use the Modelithics model of the PPI 0201BB104 broadband MLCC to derive some general principles as to how best to achieve our objective. Two circumstances must be addressed: (1) The user has the freedom to select a substrate best suited for a broadband capacitor; or (2) the user already has a substrate and wants to optimize performance with a broadband capacitor. In each case, the user must know the highest operating frequency; this will determine the required characteristics of both substrate and broadband capacitor.

To achieve our objective, we modeled performance – insertion loss and return loss -- of the PPI 0201BB104 on microstrip substrates having three different dielectric constants. Three thicknesses of each substrate were

chosen to create the following conditions with respect to the trace width necessary for a 50-Ohm characteristic impedance transmission line (at 10 GHz): Equal to the part width, less than the part width, greater than the part width. **Fig. 9** shows the basic dimensions of the part; while **Table 1** provides specifics on the substrates.

All dimensions in mils


Fig. 9 Dimensions of the PPI 0201BB104

		Substrate	Trace		
Closest	Dielectric	Thickness	Thickness	Linewidth for 50Ω	
Substrate	Constant	(Mils)	(Mils)	Zo @ 10 GHz (Mils)	
Rogers	3.9	6.6	0.71	13.1	
RO4350B		10		20.1	
		4		7.7	For the study,
					$W_{PART} = 13 \text{ mils}$
Rogers	6.5	10	0.71	13.4	
RO3006		13.5		18.3	
		7		9.2	
Alumina	9.6	13	0.1	12.8	
		20		19.8	
		5		4.8	

Table 1 Substrates used in investigation

Figs. 10 - 12 show insertion and return losses for the various substrates and thicknesses.

Passive Plus Inc.

Fig. 10 Insertion and Return loss, 0201BB104, three K=3.9 substrate thicknesses, three 50- Ω linewidths

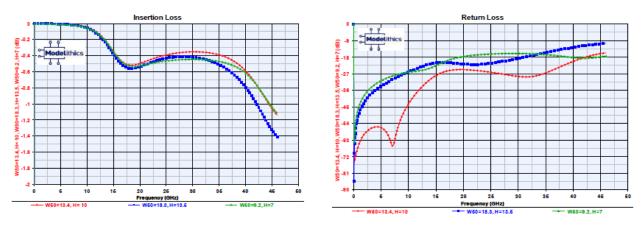
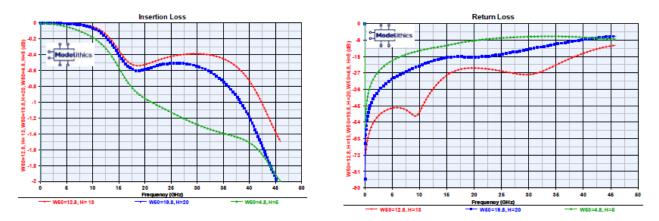
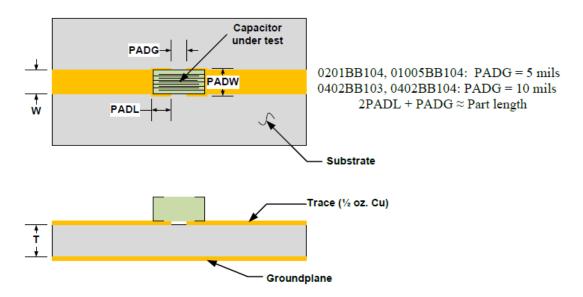


Fig. 11 Insertion and Return loss, 0201BB104, three K=6.5 substrate thicknesses, three 50- Ω linewidths




Fig. 12 Insertion loss, 0201BB104 three K=9.6 (alumina) substrate thicknesses, three 50-Ω linewidths

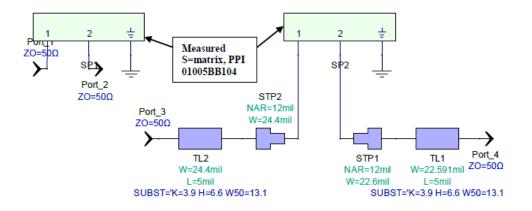
It is seen that, in all cases, best performance (red curves) is achieved when the part width is about the same as W50, the 50-Ohm characteristic impedance trace width. If the part width is either significantly greater than W50 (blue curves) or less than W50 (green curves), performance is degraded. Note that this is roughly consistent with the very simple circuit of Fig. 6 and the seemingly naïve observation above it that best performance would be obtained when (Ls/Cg)^{1/2} was about equal to 50 Ohms. (The caveats, however, still apply: The Fig. 6 circuit does not predict details of the frequency response.)

Mounting Pads and Impedance Matching

In light of the above, there is no one-size-fits-all prescription for mounting pad dimensions because there are too many variables involved: PC board dielectric constant and thickness, customer pick-and-place capabilities, PC trace tolerances, performance desired over frequency range, etc. In general, for good (but not necessarily optimum) performance, one wants the width of the part and mounting pad to be about equal to the width of a <u>50-Ohm trace on the substrate</u>, and the lengths of the lands to extend only minimally beyond the length of the part. As for the gap, 5-mils nominal is a good starting point for the 0201BB104 and 01005BB104 -- although (again) not necessarily the absolute optimum – while a 10-mil gap is a good starting point for the 0402BB103 and 0402BB104 . **Fig. 13** illustrates these suggestions.

Fig. 13 Mounting pad layout

It may be of interest that the 0201BB104 Modelithics model has a pad scalability feature, meaning that the landing pad dimensions can be changed within prescribed limits and the consequent electrical behavior characterized. Note that the min. and max. dimensions on the Modelithics pads -- PADL, PADW, PADG – are simply the ranges over which the model is valid, not recommended tolerances. Keep in mind, too, that the part itself has the tolerances shown in Fig. 9.


Determining final pad tolerances often devolves to a struggle between RF engineers, who want the pad width and tolerance to match as closely as possible the part width and tolerance, and production processing engineers,

who'd like the largest pad dimensions and tolerances possible to facilitate pick-and-place operation. Fortunately, performance over most frequency ranges through about 40 GHz seems relatively insensitive to small deviations of pad dimensions.

If the substrate thickness and trace width are determined before the broadband capacitor is selected, then it's best to choose a capacitor whose width is closest to that of the 50-Ohm trace. There is also the possibility of improvement if additional impedance matching is done. In general, when the part width exceeds the trace width, the imaginary part of the input impedance is capacitive, and the creation of additional series inductance by a short section of reduced trace width can help. Alternatively, removal of a portion of the dielectric beneath the capacitor (reducing the shunt capacitance to ground) can also be effective. Similarly, when the part width is less than the 50-Ohm trace width, the input impedance is inductive, and the creation of additional shunt capacitance by widening a section of trace width adjacent to one or both mounting pads, or the mounting pad widths (PADW) themselves, can improve performance.

An example of impedance matching is shown in **Fig. 14**, which applies to PPI model 01005BB104, a 100 nF EIA size 01005 part mounted on a 6.6 mil thick substrate of dielectric constant 3.9. The part itself is 8 mils wide and the trace it was mounted on was 12 mils wide. (The 50-Ohm trace width on the substrate at 10 GHz is 13.1 mils.) Using a scattering matrix for the part measured by Modelithics, return loss was plotted in Agilent Inc. Genesys software for (a) the part alone, and (b) a circuit that adds 5-mil-long sections of widened traces at input and output. Using Genesys's optimization function, dimensions of the traces were adjusted for best input and output return loss over the 0.05 to 46 GHz measurement range. It should be cautioned that, because of the part's insertion loss, input reflection after impedance matching at only one port is not necessarily equal to output reflection; one could improve return loss at one of the ports beyond that shown, but the improvement would come at the expense of the other port's reflection.

Fig. 14a Circuit layout for PPI 01005BB104 (a) as measured on K=3.9 H=6.6 mil trace, and (b) with simple added impedance matching

Fig. 14b Input and Output Return loss, PPI 01005BB104 (red, blue) as measured on K=3.9 H=6.6 mil trace, and (orange, green) with added impedance matching

Non-linear Behavior - VCC, Temperature, Aging

Thus far, we've discussed only the basic electrical performance of broadband capacitors as linear devices but, particularly where so-called "signal integrity" is important, e.g. in accurately reproducing a stream of (rectangular waveform) bits from input to output, a number of non-linear parameters are involved. Let's define the major ones before proceeding to some of the tradeoffs involved:

• The voltage coefficient of capacitance, VCC, is the change of capacitance – usually a decrease -- with applied voltage. In general, VCC depends on the electric field (volts/mil) across the dielectric, and the higher the dielectric constant, the greater the VCC. Any decrease in capacitance is likely to impact the low-frequency range of performance. Fig. 15 shows the capacitance change with DC voltage for three PPI broadband MLCCs.

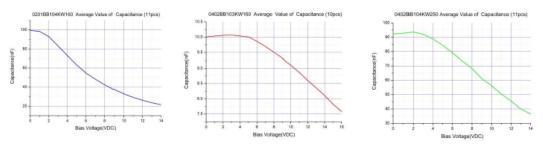


Fig. 15 Capacitance change with DC voltage for three PPI broadband MLCCs

Capacitance will also change with AC voltage and frequency, sometimes rising with the latter before falling off.

- The Temperature coefficient of capacitance, TCC, is the change of capacitance with temperature. In general, the higher the dielectric constant, the greater will be its change with temperature. Most broadband capacitors have dielectrics rated as either X7R, signifying a ± 15% maximum capacitance change with temperature from 55⁰ to +125⁰C or X5R, signifying a ± 15% maximum capacitance change with temperature from 55⁰ to +85⁰C. Again, any decrease in capacitance will impact the low-frequency range of performance.
- Aging is the tendency of non-linear dielectrics, e.g. the X7R type, to exhibit a reduction in dielectric constant as time passes. It is usually given in "percent capacitance loss per decade hour," implying that, on logarithmic graph paper where time is the "X" variable and capacitance is the "Y" variable, there is a straight line characteristic with a negative slope. Aging is typically measured starting from 10 to 24 hours after a capacitor emerges from an oven set at a temperature above that of the dielectric's Curie temperature. Thus, a capacitor will lose capacitance by the same percentage from 10 hours to 100 hours as it will from100 to 1000 or 1000 to 10,000. In order to be sure that customers receive a stable part, most manufacturers wait till the fourth decade, so that the part's age is between 1000 and 10,000 hours before shipping. Nevertheless, when thinking about performance over shelf time at the factory and subsequent field life, customers should be cognizant that over 10,000 hours), decrease by the aging specified maximum percentage.

Table 2 indicates some of the tradeoffs in design and selection of a broadband capacitor. The left-hand column contains independent parameters; the boxes show the results if any one parameter is changed as shown while the others are held constant.

Parameter	Parameter Change	Capacitance/ Low-freq. response	High Freq. Response	Voltage Rating (WVDC)	VCC	TCC	Aging
Case size	Smaller	Lower for same WVDC/Worse	Better	Lower for same capacitance			
Dielectric constant	Higher	Higher/Better			Worse	Worse	Worse
Dielectric thickness	Lower	Higher/Better		Lower	Worse		

Table 2 Broadband capacitor tradeoffs with case size, dielectric constant, and dielectric thickness

In general, larger capacitance values enable operation down to lower frequencies. To extend the upper operating frequency, smaller case sizes are needed, since these are commensurate with the smaller substrate thicknesses and narrower line widths required for higher-mode-free, high-frequency operation. Therefore, to extend both ends of the spectrum, one must squeeze equal or greater capacitance into smaller case sizes, and the only ways to accomplish this are to either decrease the inter-electrode dielectric spacing and/or use a dielectric with a higher dielectric constant. The first reduces the voltage rating (WVDC), and either approach exacerbates the non-linear effects – and thus the tradeoffs.

Performance as a Bypass Device

It is often desired to bypass some point to ground over a large frequency range, that is, provide a path having very low impedance to RF signals while still blocking DC. In the past, this was typically accomplished by an array of capacitors having different values, as shown in **Fig. 16**.

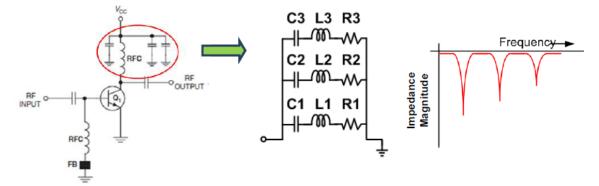
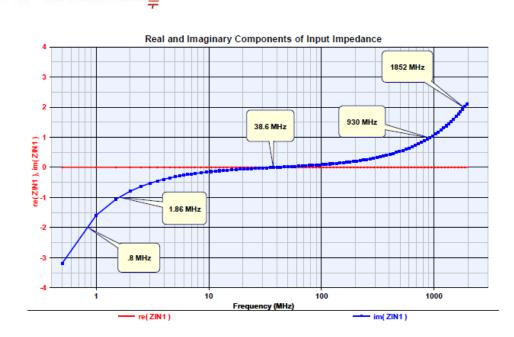



Fig. 16 Capacitor array used as bypass to ground

Here, C1 might be perhaps 100 pF, C2 might be 1 nF, and C3 might be 10 nF. There were two problems with this arrangement: (1) Above the series resonance of C3 $[=(2\pi)^{-1}(L3C3)^{-0.5})]$, its impedance was inductive and would create a parallel resonance with C1 and C2; and (2), the individual capacitors had their own built-in parallel resonances. Either problem led to an impedance magnitude vs. frequency characteristic similar to that shown on the right of Fig. 16. To reduce the magnitude of the resonances, additional loss would need to be introduced in the form of low-value resistors connecting the capacitors or ferrite beads surrounding the connecting leads. In contrast, broadband capacitors offer a simple, cost effective way to replace these arrays with a single capacitor.

Again using the Modelithics model of the PPI 0201BB104 on a 6.6 mil thick, K = 3.9 substrate, this time with a grounded output, **Fig. 17** shows the real and reactive parts of the input impedance.

Fig. 17 PPI 0201BB104 in bypass mode: Real and Imaginary parts of input impedance

It is seen that the reactance is inductive above 38.6 MHz and capacitive below that frequency; it is the magnitudes of these components that will determine the operational range. For example, if the absolute value of the impedance to ground needs to be < 1 Ohm, the frequency range over which this is achieved is 1.86 - 930 MHz; if the value can be extended to < 2 Ohms, the frequency range can be commensurately widened to cover 0.8 - 1852 MHz. Note that the plots do not include the inductive contribution of a via to the groundplane, which is likely required in many practical situations.

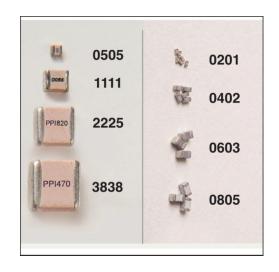
The inductive reactance could be reduced by decreasing spacing to the groundplane (although 6.6 mils is already quite thin), and total reactance can be reduced by paralleling two or more devices, but the latter may not be practical for reasons of space or economics. In summary, in a bypass mode, a broadband capacitor can effectively replace an array of capacitors to cover frequencies ranging from the high KHz/low MHz region to the low GHz region, depending on the requirements of the particular circuit.

Conclusions

Passive Plus Inc

The principal "take-aways" from the discussion are listed below:

- Used as DC blocking/RF coupling devices, SMT broadband ceramic capacitors can operate free of
 parallel resonances over a very wide frequency range. Resonances are suppressed by losses within the
 device.
- Circuit models, whether lumped or distributed, cannot adequately capture the effect of all the electrical
 phenomena involved in practical devices: mutual inductance and resistance of the electrodes;
 discontinuity reactances of microstrip-to-MLCC transitions (including solder joints); mounting pad


dimensions that exceed those of the device's termination footprints; higher (non-TEM) mode generation; radiation; etc.

- Good experimental/theoretical combination models, such as those available from Modelithics Inc., enable performance simulation on a variety of substrate thicknesses and dielectric constants. Impedance matching can often be used to improve insertion loss and return loss performance.
- Non-linear effects capacitance change with applied voltage, temperature, and time passage can
 negatively affect performance. Tradeoffs can be made that impact maximum working voltage and case
 size.
- In a bypass mode, a single SMT ceramic capacitor can replace an array of various-value capacitors to
 effectively cover frequencies ranging from the high KHz/low MHz region to the low GHz region.

REFERENCES

- M. Ingalls and G. Kent, "Monolithic Capacitors as Transmission Lines," IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 964-970, Nov. 1987
- [2] M. Ingalls and G. Kent, "Measurement of the Characteristics of High-Q Ceramic Capacitors," IEEE Trans. Components, Hybrids, and Manufacturing Technology," vol. CHMT-12, pp. 487-495, Dec. 1987
- [3] A. Murphy and F. Young, "High Frequency Performance of Multilayer Capacitors," IEEE Trans. Microwave Theory Tech., vol. MTT-43, pp. 2007-2015, Sept. 1995
- [4] V.K. Tripathi, "Assymetric coupled Transmission Lines in an Inhomogeneous Medium," IEEE Trans. Microwave Theory Tech., pp. 734-739, Sept., 1975
- [5] V.K. Tripathi, "Equivalent Circuits and Characteristics of Inhomogeneous Nonsymmetrical Coupled-Line Two-Port Circuits, *IEEE Trans. Microwave Theory Tech.*, pp. 140-142, Feb., 1977
- [6] B. Lakshminarayanan, et al, "A Substrate-Dependent CAD Model for Ceramic Multilayer Capacitors," IEEE Trans. Microwave Theory Tech., vol. MTT-48, pp. 1687-1693, October, 2000

Notes

Storage

- ① The chip capacitors shall be packaged in carrier tapes or bulk cases.
- ^② Keep storage facility temperatures from +5C to +35C, humidity from 45 to 70% RH.

③ The storage atmosphere must be free of gas containing sulfur and chlorine. Also, avoid exposing the product to saline moisture. If the product is exposed to such atmospheres, the terminations will oxidize and solderability will be affected.

④ If the above storage condition is followed, Then the solderability is assured for 12 months from our final inspection date.

Circuit Design

- ① Once application and assembly environments have been checked, the capacitor may be used in conformance with the rating and performance, provided in both the catalog and the specifications. Exceeding the specifications listed may result in inferior performance. It may also cause a short, open or smoking to occur, etc.
- ② Please use the capacitors in conformance with the operating temperature provided in both the catalog and the specifications. Be especially cautious not to exceed the maximum temperature. If the maximum temperature set forth in both the catalog and specifications is exceeded, the capacitor's insulation resistance may deteriorate. Power may suddenly surge and short-circuit may occur. The capacitor has a loss, and may self-heat due to equivalent series resistance when alternating electric current is passed through. As this effect becomes especially pronounced in high frequency circuits, please exercise caution. When using the capacitor in a (self-heating) circuit, please make sure the surface of the capacitor remains under the maximum temperature for usage. Also, please make certain temperature rise remains below 20°C.
- ③ Please keep voltage under the Rated Voltage, which is applied to the capacitor. Also, please make certain the Peak Voltage remains below the Rated Voltage when AC or voltage is super-imposed to the DC voltage. In the situation where AC or pulse voltage is employed, ensure average peak voltage does not exceed the Rated Voltage. Exceeding the Rated Voltage provided in both the catalog and specifications may lead to defect with standing voltage. In worse case situations, It may cause the capacitor to smoke or flame.

Handling

Chip capacitors should be handled with care to avoid contamination or damage. The use of vacuum pick-up or plastic tweezers is recommended for manual placement. Tape and reeled packages are suitable for automatic pick and placement machines.

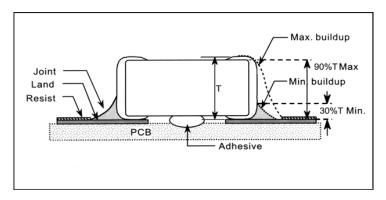
♦ Flux

• An excessive amount of flux or too rapid temperature rise causes solvent burst, and solder can generate a large quantity of gas. The gas spreads small solder particles which can cause a solder balling effect or bridging problem.

^② Flux containing too high a percentage of halide may cause corrosion of termination unless sufficiently cleaned.

③ Use rosin-type flux, and do not use a highly acidic flux (halide content less than 0.2 wt%).

(1) The water soluble flux causes deteriorated insulation resistance between outer termination unless sufficiently cleaned.

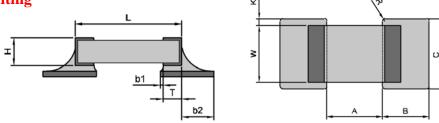

Component Spacing

For wave soldering components, the spacing must be sufficiently far apart to prevent bridging or shadowing.

This is not so important for the reflow process, but sufficient space for rework should be considered. The suggested spacing for reflow soldering and wave soldering is 0.5mm and 1.0mm, respectively.

Solder Fillet

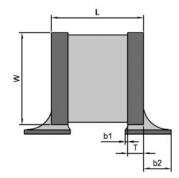
Too much solder amount may increase solder stress and cause cracking risks. Insufficient solder amount may PCB. When soldering, confirm that the solder is 30% T to reduce adhesive strength and cause parts to fall off 90% T.


Recommended Land Pattern Dimensions

When mounting the capacitor to substrate, it's important to carefully consider that the amount of solder (size of fillet) used has a direct effect upon the capacitor once it's mounted.

 \bigcirc The greater the amount of solder, the greater the stress to the elements. This may cause the substrate to break or crack.

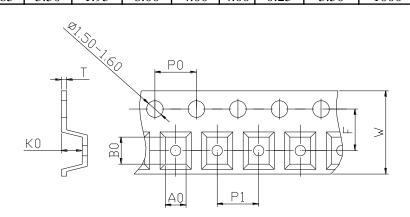
© In the situation where two or more devices are mounted onto a common land, be sure to separate the device into exclusive pads by using soldering resist.


• Horizontal Mounting

	Horizontal Mounting – Recommended Land Pattern Dimensions of Reflow soldering (unit: millimeter)										
	020	1 0402	0603	0505	0805	5 0708N	1111	2225	3838	6040	7676
А	0.28	3 0.41	0.70	0.70	1.10	0.90	1.90	3.90	7.10	13.00	16.00
В	0.28	3 0.41	0.90	0.90	1.10	1.00	1.70	2.50	3.00	3.30	3.30
С	0.37	0.54	0.90	1.40	1.40	2.90	2.90	7.00	10.20	11.30	19.60
Т	-	-	0.40	0.40	0.50	-	0.70	1.00	1.30	1.30	1.30
b1	-	-	0.05	0.05	0.10	-	0.10	0.10	0.10	0.10	0.10
b2	-	-	0.50	0.50	0.60	-	1.00	1.50	1.70	2.00	2.00
К	-	-	0.00	0.00	0.10	-	0.10	0.10	0.10	0.10	0.10
R	-	-	0.00	0.00	0.30	-	0.50	0.80	0.80	1.00	1.00
	Ho	rizontal Mounti	ng – Recomm	ended Land	Pattern	Dimensions	of Iron solderin	g (unit: milli	imeter)		
		0603	0505	0805	5	0708	1111	2225	38	38	
A	A	0.70	0.70	1.10)	0.90	1.90	3.90	7.	10	
I	3	2.00	2.00	2.00)	2.00	2.50	4.00	5.	00	
(C	0.90	1.40	1.40)	2.90	2.90	7.00	10	.20	
1	Г	0.40	0.40	0.50)	-	0.70	1.00	1.	30	
b	1	0.05	0.05	0.10		-	0.10	0.10	0.	10	
b	2	0.50	0.50	0.60)	-	1.00	1.50	1.	70	
ŀ	K	0.00	0.00	0.10)	-	0.10	0.10	0.	10	
F	ર	0.00	0.00	0.30		-	0.50	0.80	0.	80	

• Vertical Mounting

Vert	Vertical Mounting – Recommended Land Pattern Dimensions of Reflow soldering (unit: millimeter)							
	0505	0805	1111	2225	3838			
А	0.70	1.10	1.90	3.90	7.10			
В	0.90	1.10	1.70	2.50	3.00			
С	1.40	1.40	2.50	4.00	5.00			
Т	0.40	0.50	0.70	1.00	1.30			
b1	0.05	0.10	0.10	0.10	0.10			
b2	0.50	0.60	1.00	1.50	1.70			
К	0.00	0.10	0.10	0.10	0.10			
R	0.00	0.30	0.50	0.80	0.80			

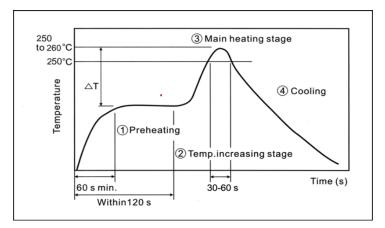

Vertical Mounting - Recommended Land Pattern Dimensions of Iron soldering (unit: millimeter)							
	0505	0805	1111	2225	3838		
А	0.70	1.10	1.90	3.90	7.10		
В	2.00	2.00	2.50	4.00	5.00		
С	1.40	1.40	2.50	4.00	5.00		
Т	0.40	0.50	0.70	1.00	1.30		
b1	0.05	0.10	0.10	0.10	0.10		
b2	0.50	0.60	1.00	1.50	1.70		
К	0.00	0.10	0.10	0.10	0.10		
R	0.00	0.30	0.50	0.80	0.80		

Tape & Reel Specifications

• Tape & Reel Specifications

									MIN	QTY/	TAPE
	A0	B0	K0	W	P0	P1	Т	F	/REEL	REEL	Material
0201N - H	0.406	0.749	0.422	8.00	4.00	2.00	0.42	3.50	500	500	Paper
0402N - H	0.60	1.10	1.00	8.00	4.00	2.00	0.20	3.50	500	500	Paper
0603N - H	0.95	1.80	0.85	8.00	4.00	4.00	0.20	3.50	500	500	Paper
0805N - H	1.60	1.60	2.40	8.00	4.00	4.00	0.20	3.50	500	500	Paper
0708N - H	2.30	3.60	2.70	8.00	4.00	4.00	0.254	3.50	500	500	Plastic
1111N - H	2.92	3.51	2.34	8.00	4.00	4.00	0.254	3.50	500	500	Embossed
1111N - V	2.92	3.51	2.34	8.00	4.00	4.00	0.254	3.50	500	500	Embossed
0505C/P - H	1.38	1.68	0.98	8.00	4.00	4.00	0.22	3.50	500	3000	Plastic
0505C/P - V	1.10	1.60	1.40	12.00	4.00	4.00	0.30	5.50	500	2000	Plastic
1111C/P - H	2.85	3.50	1.95	8.00	4.00	4.00	0.22	3.50	500	2000	Plastic
1111C/P - V	2.00	3.50	2.70	12.00	4.00	4.00	0.40	5.50	500	1500	Plastic
2225C/P	6.70	6.20	3.40	16.00	4.00	12.00	0.30	7.50	500	500	Plastic
3838C/P	10.10	10.10	3.30	16.00	4.00	16.00	0.30	7.50	50	200	Plastic
0505X- H	0.042	0.065	0.054	8.00	4.00	4.00			500	4000	Plastic
1111X - H	0.109	0.131	0.091	8.00	4.00	4.00	0.220	3.50	500	2000	Plastic
2225 - H	0.270	0.235	0.128	12.00	4.00	4.00			500	500	Plastic
0603CG	1.05	1.80	0.90	8.00	4.00	4.00	0.90	3.50	1000	4000	Paper
0805CG	1.40	2.20	1.20	8.00	4.00	4.00	0.22	3.50	1000	3000	Plastic
1206CG	1.91	3.51	1.30	8.00	4.00	4.00	0.25	3.50	1000	3000	Plastic
1210CG	2.85	3.50	1.95	8.00	4.00	4.00	0.25	3.50	1000	3000	Plastic

Resin Mold


If a large amount of resin is used for molding the chip, cracks may occur due to contraction stress during curing. To avoid such cracks, use a low shrinkage resin. The insulation resistance of the chip will degrade due to moisture absorption. Use a low moisture absorption resin. Check carefully that the resin does not generate a decomposition gas or reaction gas during the curing process or during normal storage. Such gases may crack the chip capacitor or damage the device itself.

Soldering For Chip Capacitors

• Reflow Soldering

When sudden heat is applied to the elements, the mechanical strength of the components decrease because change can cause deformity of components inside. In order to avoid mechanical damage in the elements, preheating should be requested for both of components and the PCB board. Preheating conditions are given in the table below, It is requested to keep the temperature gap between the soldering and the elements surface (Δ T) as small as possible.

When elements are submerged in solvent after mounting, be sure to maintain the temperature gas (ΔT) between the element and solvent within the range shown in the table below.

Chip Capacitor	0402/0603/0505/0805/1111	2225/3838
Preheating	∆T≤190°C	∆T≤150°C

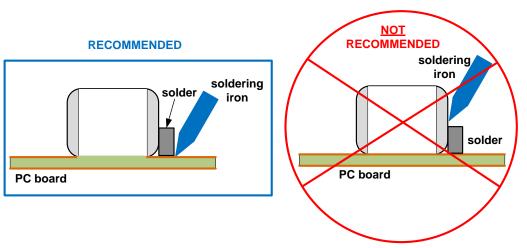
Soldering Guide

<u>Soldering iron</u>. A temperature controlled iron of suitable wattage is strongly recommended. The iron temperature should typically be set 20-30 ^oC above the solder liquids temperature. Tip size is important; it should be about the same size as the part. Too small a tip (corresponding to an iron of insufficient wattage) will take too long to heat the printed circuit board land and part, while too large a tip (too high a wattage iron) may damage the board or component.

<u>Soldering Procedure</u>. The initial consideration is which end of the capacitor to solder first. The choice can generally be decided by recognizing that it is desirable to minimize the heat flowing directly through the component. Thus, it is best to start from the end that has the poorest heat conduction (equals highest thermal resistance) to a heat sink. (Were one to start from the opposite end, a good heat path would have been created <u>through</u> the capacitor to the heat sink when one soldered the second joint.) If it is not apparent which land has the poorer connection to a heat sink, begin with the one having the smallest area.

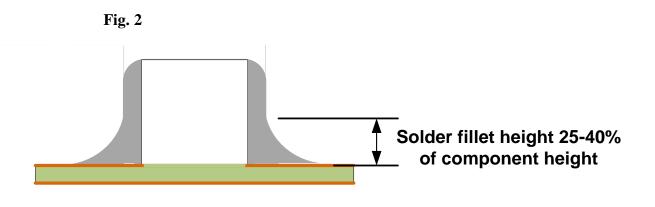
Follow these steps in soldering:

1. <u>Pre-heat the substrate</u>. Where possible, it is very desirable to gradually pre-heat the substrate, e.g. on a hotplate, to about 30 ^oC below the solder liquids temperature. Two steps are usually sufficient: Start the hotplate at a temperature about halfway to the desired pre-heat temperature, place the board on it and wait till the board temperature stabilizes, then increase the hotplate temperature to the desired final pre-heat value.


2. <u>Pre-"tin" the traces.</u> Select one of the PC board lands and clean it with isopropyl alcohol. If the solder you are using does not contain its own flux, place a small quantity of flux on the land, and a small amount of solder into the flux. (A razor may be used to cut a tiny custom preform from solid wire.) Place the iron on the printed circuit trace adjacent to the flux (but not touching) and heat the land until the solder melts into a flat, shallow pool. Remove the iron, then clean off any remaining flux with isopropyl alcohol. Repeat the procedure for the second land, then add fresh flux and a fresh solder preform (if not using flux-core solder) to each tinned land. (The preform should have sufficient mass to create a proper fillet – see step 5 – on the component.)

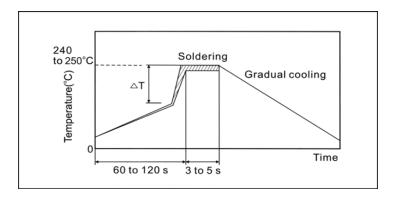
3. Pick up the component with either a hand tweezer or vacuum tweezer. (Stainless steel or ceramic-tipped tweezers are preferred.)

4. Place the component so that it straddles the circuit board lands, and make sure it lies flat on the board. As shown in **Fig. 1**, **Do not touch the component directly with the soldering iron**. Rather, touch the iron to the land adjacent to the capacitor until the solder begins to flow; then move the iron slowly toward the component.



5. When a fillet forms, remove the iron. As shown in **Fig. 2**, solder fillets should occupy about 25-40% of the component's height, have a concave profile, and be free of peaks and voids.

6. Repeat steps 1-5 for the second joint, then let the board cool gradually to room temperature. Use isopropyl alcohol to remove any residual flux from each joint.

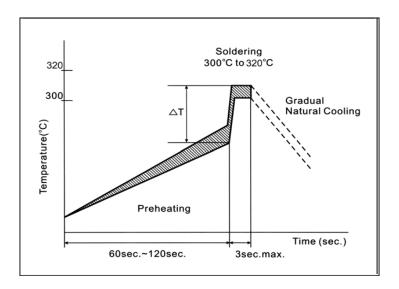

• Wave Soldering

When sudden heat is applied to the elements, the mechanical strength of the components should decrease because remarkable temperature change can cause deformity of components inside. Also long soldering time or high soldering temperatures, result in leaching by the external electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.

In order to avoid mechanical damage in the elements, preheating should be requested for both of the components and the PCB board. Preheating conditions are given in the table below. It is requested to keep the temperature gap between the soldering and the elements surface (.T) as small as possible.

When elements are submerged in solvent after mounting, be sure to maintain the temperature gas (.T) between the element and solvent within the range shown in the table below.

Do not apply the flow soldering to capacitors not listed in the table below.


Chip Capacitor	0402/0603/0505/0805
Preheating	∆T≤150°C

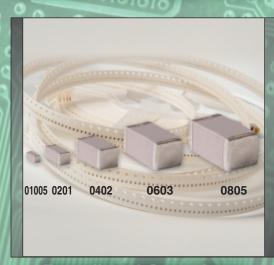
Passive Plus does not recommend flow soldering for its 1111P/1111C, 2225P/2225C, 3838P/3838C.

• Soldering Iron

When sudden heat is given to the elements by soldering iron, the mechanical strength of the components should weaken because sharp temperature change can cause deformity of components inside. In order to avoid mechanical damage in the elements, preheating should be requested for both of the components and the PCB board. Preheating conditions are given in the below table. It is requested to keep the temperature gap between the soldering and the elements surface (Δ T) as small as possible. After the soldering, it should not be allowed to cool down suddenly.

Size	Soldering Iron	Temperature	Soldering Iron head Size	Solder
0505/0805		330°C		
1111	70W Thermostat Iron	350°C		63Sn/37Pb,
2225	70 w Thermostat from	370°C		95.5Sn/3.8Ag /0.7Cu
3838		370°C		

0805



RF & Microwave Capacitors

PPI470

3838

Custom Assemblies

PPI 160aF±2%

7676

HF/UHF Power Applications

6040

PPI BOpF±83

1313

Broadband Capacitors - Up to 110GHz

www.PassivePlus.com