advertisment Advertisement
This ad will close in  seconds. Skip now
advertisment Advertisement
advertisment Advertisement

3D EM and Spin Response Simulation: MRI Systems

/ Print /
| ShareMore
/ Text Size +
10/11/12 8:00 am to 10/11/12 9:00 am EDT

CST webinars 468x60 Fall 2012


Date: October 11th, 2012

Time: 8am PT, 11am ET, 5pm CET


Magnetic Resonance Imaging (MRI) systems rely on a complex interaction of different physical domains: electromagnetic fields trigger a response of nuclear spins inside the human body, while thermal heating of the body needs to be controlled. The quality of the resulting MR image depends both on the homogeneity of the underlying RF fields and the sequence chosen to create the image. In this webinar we will present a co-simulation using CST MICROWAVE STUDIO (CST MWS) for the coil design and the Jülich Extensible MRI Simulator (JEMRIS – to show these joint effects.

CST MWS is used to design and simulate the MRI RF coil. This is a challenging task, especially for modern high field systems. Typically the "coils" are based on multi-channel systems which require circuit based matching and tuning to obtain the desired homogeneous field overlay. The new CST MRI-toolbox helps to directly evaluate the essential quantities such as the B1+ and B1- fields, their statistical properties, but also safety relevant quantities such as general averaged SAR results, "worst case SAR" of multi-channel systems or "total SAR per material". Transient thermal heating based on the bioheat equation can also be monitored.

JEMRIS is used to simulate the image generation based on the Bloch equations, with EM fields simulated in CST MWS and the selected MR sequence as inputs. The images obtained through simulation show potential artefacts due to non-ideal field distributions or the sequence properties. Additional outputs can be generated to obtain important quantities such as g-factors and the image signal to noise ratio.


Presenter bios:

Tilmann Wittigwas born in Leverkusen, Germany, in 1972. He holds a Dipl.-Ing. degree in telecommunications and a Ph.D. in electromagnetic simulation technology from the Technical University of Darmstadt, Germany. In 2004 he joined the CST AG, where he works as a Senior Application Engineer in the areas of antenna and bio-medical simulations as well as computational dosimetry.

Jörg Felderwas born in Marl, Germany, in 1973. He received his Dipl.-Ing. degree in communication techniques and his Ph.D. in single-sided magnetic resonance imaging from the RWTH Aachen, Germany, in 1998 and 2004, respectively. In 2004 he joined Bruker BioSpin MRI GmbH as RF development engineer before accepting a position as team leader in hardware development at the Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, in 2007. His current research focus is high field MRI technology especially the development of parallel transmit coil arrays and system components.


Forgot your password?

No Account? Sign Up!

Get access to premium content and e-newsletters by registering on the web site.  You can also subscribe to Microwave Journal magazine.


advertisment Advertisement