ROG Blog
ROG Blog RSS FeedRSS

rog_blog
The Rog Blog is contributed by John Coonrod and various other experts from Rogers Corporation, providing technical advice and information about RF/microwave materials.

Finish Makes a Difference In Broadband PCB Loss

 The choice of plated finish can make a real difference in a PCB’s conductive loss, especially for broadband, high-frequency circuits. To better understand the loss performance of different plated finishes, various transmission lines were fabricated on different circuit laminates and different plated finishes applied.  


Read More

Silence Filter Harmonics with Composite Circuit Materials

 Microstrip edge-coupled bandpass filters (BPFs) can help clean the spectrum around a desired center frequency. Fabricated on printed-circuit-board (PCB) materials, these compact filters can be integrated with other circuit functions to provide dependable filtering of communications bands and high-frequency signals for a wide range of applications. 


Read More

Comparing PCBs for Microstrip and Grounded Coplanar Waveguide

Circuit designers must often select a circuit technology, such as microstrip or grounded coplanar waveguide (GCPW) circuitry, with a particular design and circuit material to achieve optimum performance. Circuit technologies, such as microstrip and GCPW, each have their strengths and weaknesses, and it may help to take a closer look at these two circuit technologies in particular to see how they stack up.


Read More

Welcome to ROG Cares

 Here at Rogers Corporation, we help power, protect, and connect our world. On the surface, it means Rogers helps our world with greater reliability, efficiency, and performance, to build a safer, cleaner and more connected world. The materials technologies we create deliver solutions for tomorrow’s breakthroughs.


Read More

Comparing Microstrip and Grounded Coplanar Waveguide

 High-frequency circuit designers must often consider the performance limits, physical dimensions, and even the power levels of a particular design when deciding upon an optimum printed-circuit-board (PCB) material for that design. But the choice of transmission-line technology, such as microstrip or grounded coplanar waveguide (GCPW) circuitry, can also influence the final performance expected from a design. Many designers may be familiar with the stark differences between high-frequency microstrip and stripline circuitry. 


Read More

Packing Power Into Microwave PCBs

 Power amplifier design at RF/microwave frequencies can be aided by a wise choice of active devices, such as discrete transistors or monolithic microwave integrated circuits (MMICs). But don’t overlook the importance of the printed-circuit-board (PCB) material when planning for a solid-state power amplifier (PA) circuit. The circuit material can help or hurt a PA design, and knowing what is important in a PCB material intended for a PA is the first step in selecting a circuit material that enhances the PA’s performance. 


Read More

Silence Phase Noise With The Right Materials

 Phase noise has long been a key parameter in high-frequency components, such as oscillators and frequency synthesizers, and high-frequency systems, such as radar and communications receivers. The choice of PCB material can contribute a great deal to the ultimate single-sideband (SSB) phase-noise performance possible from a circuit design. Understanding the key PCB material parameters that relate to phase noise can help when specifying a circuit laminate for the “quietest” phase noise possible for a given frequency. 


Read More

Composing Capacitors and Inductors on PCB Materials

 Circuit design engineers have long relied upon the basic physics of printed-circuit boards (PCBs) and how capacitors and inductors can be formed from simple patterns and structures on a PCB. A number of PCB material traits, in particular the consistency of the dielectric constant, can go a long way towards achieving consistent and reliable PCB capacitors and inductors especially at RF and microwave frequencies. 


Read More

Selecting PCB Materials For High-Speed Digital Circuits

 Digital circuits continue to conquer higher speeds, with components such as microprocessors and signal converters routinely performing billions of operations per second. True, high-speed digital circuits can be flawed by such things as impedance discontinuities in transmission lines and poor plated-through-hole (PTH) interconnections between layers on multilayer circuit boards. But they can also be hurt by less-than-ideal choices of printed-circuit-board (PCB) materials for those high-speed-digital circuits. Which leads to the question: “What are the key parameters to consider when selecting a PCB material for a high-speed-digital circuit application?” 


Read More