Whitepapers

Online Design Support and Evaluation Powered by Remote Simulation

Transim's Design Center is a web-based application that accelerates the design-in complex products into your customers' target applications. Design Centers are already used throughout the analog-mixed signal and power management market place. New areas with pilot implementations or under development are motor drive systems, digital control using microprocessors and RF&MW
Read More

The Design Challenges of RF SIPs and Multi Chip Modules

RF SiP and MCMs integrate CMOS integrated circuits (ICs) for digital circuits and GaAs or SiGe devices for RF and microwave circuits with soft-board laminates and LTCC packages. Software used to design these complex circuits must seamlessly bring together synthesis, simulation, and verification solutions via a single interface ensure optimum component design and placement in each technology.
Read More

Optimized Device Design: A Demonstration of Parameterization, Optimization, and High-performance Computing with Hardware Accelerated FDTD

As technology has advanced, tools have been developed that go beyond merely analyzing devices to tools that design devices. These tools allow the user to select basic structures with variable dimensions, size constraints, and performance goals and then iterate automatically until the best possible design is found. The user is freed from the burden of monitoring the progress of each individual simulation and can devote time to other tasks. This evolutionary step in simulation software is improving the productivity of engineers developing next generation devices in a variety of fields.
Read More

Setting Strategies for 4 x 4 Print Beam Forming Networks

In building a strategy for effective integrated-circuit design, it is important to understand the characteristics of different RF and microwave printed beam forming networks (BFN). Optimization of the design process for BFN can reduce unnecessary costs and design iterations, thus allowing designers time to improve the quality of the product. The design process includes various stages from analysis of requirements to final design documentation, balancing and trading off factors such as electrical performance, size, cost, etc.
Read More

Solutions for Securing Successful First-pass Component Design

At one time, linear systems and components were designed using a patchwork of instrumentation and measurements. This approach was quickly replaced by scattering parameters (S-parameters), which unified the multiple instruments and measurements and enabled just one instrument, the network analyzer, to make measurements like gain, isolation and match with a single connection. For more than 40 years, S-parameters have stood as one of the most important of all the foundations of microwave theory and techniques. They are related to familiar measurements such as S11 input match, S22 output match, S21 gain/loss, and S12 isolation, and can be easily imported into electronic simulation tools. Today, S-parameters are commonly used to analyze and model the linear behavior of RF and microwave components. Unfortunately, current industry trends toward increasing energy efficiency, higher output power and longer battery life are forcing many linear devices to operate in a nonlinear fashion. Measuring this behavior requires a solution that is much more deterministic in nature.
Read More