advertisment Advertisement
This ad will close in  seconds. Skip now
advertisment Advertisement
advertisment Advertisement
advertisment Advertisement
advertisment Advertisement

Super-resolving Properties of Metallodielectric Stacks

August 11, 2011
/ Print / Reprints /
| Share More
/ Text Size+


We show that diffraction can be suppressed in a realistic one-dimensional metallodielectric stack (MDS) at visible wavelengths to achieve super-resolution imaging. In our calculations we use two popular techniques, which can be adapted to investigate the imaging properties of MDSs.

The two methods are the transfer matrix method (TMM) and the Finite element method (FEM) and they are compared with one another for consistency, when possible. We demonstrate the robustness and reliability of the full vector nature FEM without omitting the scattered fields and executed using appropriate boundary conditions. Our designs use material parameters taken from measured data and we use structures that can be achieved with the current state of art in nanofabrication technology. Calculations and experiments show that MDSs composed of periodic films, have a high signal throughput and are excellent candidates for widely tunable super-resolution devices.

Post a comment to this article


Forgot your password?

No Account? Sign Up!

Get access to premium content and e-newsletters by registering on the web site.  You can also subscribe to Microwave Journal magazine.


advertisment Advertisement